

Piecing Together the XML Jigsaw

As XML is only just coming of age, it is a very interesting time to be learning about it. However, it can also
be quite a challenging time to come to XML as the standards are being argued over and new proposals are
being made. Hopefully we will guide you towards what can sometimes appear to be a moving target. In this
chapter we will show you how the various pieces of the XML jigsaw fit together to create a working XML
application.

We also give you a taste of some of the new proposals, so you know which areas are the ones to keep your
eyes on. In this chapter we will discuss:

� Document Type Definitions (DTDs)
� The difference between well-formed and valid documents
� Style Sheets for adding formatting to your XML documents
� Parsers
� Linking in XML
� Displaying XML in a browser
� The emerging proposals for Namespaces
� The new emerging proposals for XML Schemas including XML-Data and DCDs
� Why you should be getting so excited about XML

XML Applications

22

Bits and Pieces
As we saw in the introduction, to use XML practically and to be able to view it over the Web we need a
number of pieces that together make up the XML jigsaw. We will give you an overview of these pieces, so
that when we come to look at them in detail in the following chapters you will know how they all fit
together. To demonstrate them we will keep coming back to the CD Library example we met earlier. Here it
is again to remind you, remember that the full XML file would contain many more CDs between the
<cdlib> root tags marked up in exactly the same way:

<cdlib>

 <cd>
 <artist>Arnold Schwarzenegger</artist>
 <title>I'll Be Bach</title>
 <format>album</format>
 <description>Arnie plays Bach's Brandenburg Concertos 1-3 on the Hammond
 Organ</description>
 </cd>

 <cd>
 ...
 </cd>

</cdlib>

Document Type Definition (DTD)
So, we have seen that you can have your XML document nicely marked up with handy tags that you can
understand and which provide information about their content. But we need to declare the rules for the
language we have created somewhere. We referred to this as having to:

� Declare what constitutes markup
� Declare exactly what our markup means

Practically speaking, this means that we have to give details of each of the elements, their order and say
what attributes they can take. The XML specification defines these rules using a DTD, or Document Type
Definition. When a DTD is sent with an XML file the user agent can then expect a document that conforms
to the DTD.

However, as XML keeps changing we need to be aware of the other proposals put in for alternative ways of
providing this information, which all come under the banner of XML Schemas. We will cover DTDs first,
as they are part of the original core XML 1.0 specification, before coming back to these other options,
which are just at the proposal stage, later in this chapter.

The DTD can either be an external file or it can be declared internally within the document type
declaration. If the DTD is in an external file we link it to our document in the following way:

<!DOCTYPE cdlib SYSTEM "cdlib.dtd">

HTML has a DTD, but you don't get to see it every day because it is contained within most popular Web
browsers. You can view it at http://www.w3.org/TR/REC-html40/loose.dtd. According to the
HTML standard, when authoring HTML documents you are supposed to include the following line of code:

http://www.w3.org/TR/REC-html40/loose.dtd

Piecing Together the XML Jigsaw

23

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 //EN">

It tells the user agent the location of HTML's DTD, however it is often left out because, practically
speaking, it is not necessary and if you are using browser specific tags which deviate from the specification
it may cause unpredictable results.

Creating your own markup language using a DTD need not be excessively complicated. Here is the internal
DTD for the CD Library example. As you can see, it is a very simple DTD. We go into more detail in the
next chapter, however this is enough to make our library example functional.

<!DOCTYPE cdlib [
<!ELEMENT cdlib (cd+)

<!ELEMENT cd (artist+, title+, format?, description?)>
<!ELEMENT artist (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT format (#PCDATA)>
<!ELEMENT description(#PCDATA)>

]>

Briefly, the <!DOCTYPE cdlib [line is used to distinguish it from other DOC types. It also gives the
same name as the root element of the document. While <!ELEMENT> is used to declare elements in the
format:

<!ELEMENT name (contents)>

where name gives the name of the element, and contents describes what type of data can be included
and which elements are allowed to be nested inside that element. The element <cd> has to include the
elements <artist> and <title> (they are forced to be included by the use of the + symbol which
means one-or-more), while the <format> and <description> elements are optional (denoted by the ?
symbol).

The elements included in <cd> are then defined. These can take almost any ordinary text without markup
(we explain the exceptions in the next chapter).

It's very easy to get confused between Document Type Definitions and Document
Type Declarations... To clarify, just remember that a document type declaration
either refers to an external document type definition, or else it contains one in the
form of markup declarations as in the example we have just seen.

As XML grows it is likely that there will be an ever increasing number of popular DTDs that we will be
able to download and use, without always having to go to the trouble of writing our own. It is widely
expected that industry standards for marking up certain types of document will soon appear. You can see
this happening already with examples like Channel Definition Format (CDF) and Chemical Markup
Language (CML) which we look at later in this chapter. But even if you are not planning to write your own
DTDs an understanding of how they work will still be very important when writing XML applications.

XML Applications

24

Well-formed and Valid Documents
The XML specification defines two types of document, well-formed and valid ones. To be well-formed a
document must conform to the following three rules:

� The document must contain at least one element
� The document must contain a root element, that is a unique opening and closing tag that surrounds the

whole document
� All other elements contained within the document must be nested with no overlap between elements

So, looking again at our example of a record library, the following is a well-formed XML document:

<cdlib>
 <cd>
 <artist>Arnold Schwarzenegger</artist>
 <title >I'll Be Bach</title>
 <format>album</format>
 <description>Arnie plays Bach's Brandenburg Concertos 1-3 on the
 Hammond Organ</description>
 </cd>
</cdlib>

It contains more than the one required element. It has a root element in the form of the <cdlib> element –
this can be compared to the opening <HTML> and closing </HTML> tags in HTML documents. And its sub-
elements, or child elements, nest without any overlap. So it meets the criteria for being well-formed.

Valid documents on the other hand should not only be well-formed, they should also have a Document Type
Definition which the well-formed document conforms to. This means that it must only use elements that
have been declared in the order specified, and take the allowed types of content defined in the DTD.

The concept of a valid document is borrowed from SGML, however documents in SGML must be valid –
there is no concept of SGML documents just being well-formed. We go into the area of well-formed and
valid documents in detail in Chapter 2. However, simply put, XML was designed for the Web, and as long
as the well-formed document can be meaningfully used - whether displayed on the browser or used by some
other user agent - there is no need to send a DTD, it's just extra traffic. It may sound strange, but it is
possible to make use of an XML document even without its DTD in certain instances, despite the user agent
not knowing exactly what the tags you created mean.

Although XML is far simpler than SGML it is actually stricter, which is why you don't need a DTD with an
XML file. This is the case because XML's strictness allows an XML processor to infer what rules apply
from a well-formed document. It does this by constructing a tree of all the nested elements, and establishing
the relationships between all of the various parts. As SGML doesn't require closing tags it would be
impossible to do this with an SGML document if there wasn't a DTD. But, as long as the XML document
can be used/displayed with functionality it is not always necessary to use the extra bandwidth by sending a
DTD.

Piecing Together the XML Jigsaw

25

This doesn't mean that you should skip the DTD section of Chapter 2 too quickly, it's still advisable for a
set of tags created in XML to conform to a DTD. This is because, if several people are creating or using
documents that need to be compatible, the DTD sets out the rules that have to be obeyed. This helps
maintain the structure and feel of a multi-author project. DTDs also allow you to use a piece of software
called a validating parser to make sure that they are not violating the rules of the DTD. And if that means
less work for you, and the other authors, then all the better.

Having seen the DTD, the following diagram shows how it can link to the XML document, and how the
document can then be formatted for a browser when linked to a style sheet. It is to style sheets that we will
turn next.

Remember that, at the time of writing, the main browsers had very little support for XML.
Although it is likely that both Netscape Communicator 5 and Microsoft IE 5 will feature a
high degree of support for XML, there are ways we can display XML in non-compliant
browsers - which we come back to after our discussion of style sheets.

Style Sheets
Unlike most of the things we have talked about so far, style sheets are by no means a recent invention. They
are as old as printing. Style sheets are made up of rules that declare how a document should be displayed.
Even in the days of manual typesetting, book publishers would have a written set of instructions that told
the printer how their house style was to be represented. The printer would then use this to mark up the
publisher's manuscript. As our XML documents do not contain details of how the contents are to be
displayed (maintaining the distinction between content and presentation), we use style sheets when
displaying our documents to a Web browser so that we can present them in an attractive or practical
manner.

Advantages of Using Style Sheets
As we have seen, style sheets are needed when we want to specify how our XML documents are to be
presented. Apart from being a necessary addition, they offer a number of general advantages:

XML Applications

26

� Improve the clarity of documents
� Can help reduce download time, network traffic and server load
� Allow you to present the same source in different ways for different purposes
� Allow you to change the presentation of several files by just altering the one file that contains the rules

of how it is to be displayed

As we saw in the introduction, when the non-scientific crowd began to create Web pages, their concern over
the appearance of their pages led to the creation of many new and heavily used stylistic tags and attributes.
As a result the size of files soared - known as page bloat - which made it harder to read the documents'
code, thus making maintenance of pages more difficult. Take the following pages for example:

Piecing Together the XML Jigsaw

27

The use of stylistic markup in the second page increases the file size and decreases legibility of code. You
can view the full pages and their source on our Web site at:

http://webdev.wrox.co.uk/books/1525

But here is the code so that you can see the difference in file size:

<HTML>
<HEAD>
<TITLE>old school html</TITLE>
</HEAD>

<BODY>

<H1>Wrox Papers</H1>

This is a simple page that
demonstrates how stylistic
markup caused page bloat.

<H2>Paper One</H2>

<H3>Abstract</H3>

While the original scientific
crowd...
...see their content.

<H3>The rest of the paper</H3>

The scientific community had
been
...

<HTML>
<HEAD>
<TITLE>non-scientific html</TITLE>
</HEAD>

<BODY BGCOLOR="#F5FFFA"
ALINK="#F4A460" LINK="#993200"
VLINK="#556B2F" TEXT="#556B2F">

<H1 ALIGN=CENTER><FONT FACE=ARIAL
SIZE=7>Wrox Papers</H1>

<DIV ALIGN=CENTER><FONT
COLOR="#993200">This is a simple
page that demonstrates how stylistic
markup caused page
bloat.</DIV>

<H2 ALIGN=CENTER><FONT FACE=ARIAL
SIZE=6>Paper One</H2>

<H3><FONT FACE=ARIAL SIZE=5
COLOR="#993200">Abstract</H3>

While the original scientific
crowd...
...see their content.

<H3><FONT FACE=ARIAL SIZE=5
COLOR="#993200">The rest of the
paper</H3>

The scientific community had been
...

Any Web site or company intranet that spans several pages, while maintaining a consistent appearance,
requires the same style rules to be repeatedly sent to the browser with each page. Because browsers cache
the data they receive from Web pages, this repeated sending of the same rules is a waste of bandwidth,
download time and server load. Style sheets put all the style rules in one separate document so that they
only need to be sent once, then each of the site's pages can link to the same style sheet which is stored in
the browser's cache – how net-environmentally friendly.

In addition, because all the style rules are kept in one file, it is then possible to change the appearance of
the whole site by just altering the style sheet rather than the individual style rules on each page.

http://webdev.wrox.co.uk/books/1525

XML Applications

28

If you use the same data in several pages, each of which present the data in different ways, all you have to
change is the line which links to different style sheets. An example of where this may be useful could be
where your site has different sections, but has common information that has to be presented in a style
relevant to that section. Alternatively, if you wanted to provide a large text version for people with sight
difficulties, you could offer the same page styled with bigger fonts for those who would have trouble
reading the normal size font.

The content pages contain a reference to the style sheet, so that the user agent knows where to get it from -
rather like the way links to an image are used. There are several style sheet languages including:

� CSS Cascading Style Sheets
� XSL Extensible Stylesheet Language
� DSSSL Document Style Semantics and Specification Language
� XS also known as DSSSL-0

The two that really concern us here are CSS and XSL. DSSSL was the official styling language for SGML
and is extremely powerful, however it is also extremely complicated and has not been widely adopted. XS
or DSSSL-0 was intended to be a simplified form of DSSSL, although it was still seen as too complicated to
ever become a success on the Internet. So let's take a quick look at the other two.

Cascading Style Sheets
The Cascading Style Sheets Level 1 specification was released by the W3C in late 1996. It was supported to
a degree in both Communicator 4 and IE4, although both of the main browser manufacturers have pledged
to fully support CSS1 in their forthcoming Communicator 5 and IE5 browsers.

CSS Level 1 will eventually be superceded by CSS Level 2 (the recommendation was
released May 1998). However, it may be some time before the browser manufacturers fully
support CSS Level 2 seeing how they haven't fully implemented Level 1 yet.

Piecing Together the XML Jigsaw

29

Cascading Style Sheets are already finding their way onto the Web and got their name because, when
several style sheets are present, a cascade is formed with properties being taken from all of the sheets, any
conflicts being resolved according to a set of rules. CSS are simple to construct, and once they have been
created there is no limit to the number of pages that can use them. HTML documents just need one simple
line of code to link to a CSS:

<LINK REL="stylesheet" TYPE="text/css" HREF="example.css">

The W3C are currently addressing the way in which XML documents will link to CSS. There is a note on
the subject available from:

http://www.w3.org/TR/NOTE-xml-stylesheet

Although one popular way to do this at the moment is:

<?xml-stylesheet href="cdlib.css" type="text/css"?>

Here is an example of a cascading style sheet that could be used with the CD library we have been looking
at:

artist {
 display: block;
 font-family: Arial, Helvetica;
 font-weight:bold;
 font-size: 20pt;
 color: #9370db;
 text-align: center;
 }

title {
 display: block;
 font-family: Arial, Helvetica;
 font-size: 20pt;
 color: #c71585;
 }

format {
 display: block;
 font-family: Arial, Helvetica;
 font-size: 16pt;
 color: #9370db;
 }

description {
 display: block;
 font-family: Arial, Helvetica;
 font-style: italic;
 font-size: 16pt;
 color: #FF1010;
 }

When eventually viewed through a browser our CD Library with this style sheet would present a list of CDs
as shown in the following screen shot. This was taken using a beta version of IE5, if you have a copy of IE5
you can try it from our Web site at: http://webdev.wrox.co.uk/books/1525

http://www.w3.org/TR/NOTE-xml-stylesheet
http://webdev.wrox.co.uk/books/1525

XML Applications

30

There are many advantages to using CSS, and such style sheets are discussed further in Chapter 7.
However, CSS uses a fixed set of markup, you cannot create your own new tags – it is not extensible. While
CSS can be used for presentation of XML documents, there is another more powerful option – XSL.

Extensible Stylesheet Language
While many XML authors will be content with the functionality of Cascading Style Sheets to display
simply structured XML documents, XSL offers all the same advantages that CSS offers with additional
functionality, and is likely to be used where more powerful formatting capabilities are required.

XSL draws on both DSSSL and CSS, (and DSSSL-0). It also uses ECMAScript, which was derived from
JavaScript.

XSL is made up of two parts:

� An XML vocabulary for specifying formatting semantics
� A language for transforming XML documents

XSL not only allows the user to specify how parts of a document should look (font, size, color, alignment,
borders etc.) just like CSS, but is also extensible, so it allows users to create their own new formatting tags
and properties.

XSL also offers users further control over the presentation of their documents. For example, it can add rules
that order the presentation of sections. If you go back to the CD library example, these rules would allow
you to specify different orders for the presentation of the data, so you could have either <artist> first, or
<title>. The order of the data doesn't matter, because the tags can be interpreted and re-ordered.

At the time of writing XSL was at the First Draft stage of the W3C process. It was originally a joint
proposal from Microsoft, Inso Corporation and ArborText, however the Working Draft 1.0 supercedes the
proposal. To keep up to date with the development of XSL, keep an eye on the W3C site's XSL page,
located at

http://www.w3.org/Style/XSL/

http://www.w3.org/Style/XSL/

Piecing Together the XML Jigsaw

31

CSS vs. XSL
It is likely that both CSS and XSL will be present on the Web for the foreseeable future because they
address different needs. XSL allows the author control over complex formatting where the contents of a
document might be displayed in multiple places; for example the singer of a track in our CD library
example might also appear in a dynamically generated table displaying their back catalog, or used as a page
header. Meanwhile, CSS is intended for dynamic formatting of online documents for multiple media not
just visual browsers, but also audio, braille, hand-held devices etc.

 CSS XSL

Can be used with HTML Yes No

Can be used with XML Yes Yes

Is a transformation language No Yes

Syntax CSS XML

For more information on Style Sheets, see Professional Style Sheets for HTML and XML
from Wrox Press (ISBN 1-861001-65-7).

Parsers
I don't want to get embroiled in philosophical rambling here. But, when we have stored our XML in a plain
text format that we consider to be human-readable, we can't really say that computers can 'read' the file -
they interpret it. It is the job of a parser to help the computer interpret the XML file by putting it in a format
they can use. XML applications in turn help both us and parsers interpret the file because of the information
they contain on the nature of the text chunks within the tags.

The XML specification refers to two components for practical use of XML: the XML processor and the
application. Parsers fulfil the role of the XML processor, they load the XML and related files, check that
the XML is either well-formed or valid (depending on the type of parser), and build a document tree
structure that can be passed on to the application. It is this tree structure which can then be practically used
by the computer. The application is the part which processes the data that is in the document tree created by
the processor.

In practice the parser is generally just a component for programmers to call upon when building their
application. As such IE5 integrates an XML parser called MSXML.

Remember that we said XML documents do not always need a DTD? It is the ability of
parsers to form a document tree without a DTD that allows XML files to be functional on
their own.

HTML browsers combine the role of the processor and the application. Because HTML is the set of rules
for how the document is to be displayed, there are strict rules that say how the files can be interpreted.
However, by separating the DTD and the style sheet from the XML file, applications can use the same
document for different purposes. So the type of application is not just restricted to being a browser, it could
be a word-processor, braille printer etc. It may not even be an application that is used directly by humans; it
may be an automated tool, for example a system which creates letters when certain events happen – such as
when you go over your overdraft limit. It could even add a charge for the letter to your account.

XML Applications

32

While this is a central use for parsers, they also perform another very useful function. We have already seen
that, because XML is a far stricter language than SGML, parsers can be used as a tool to help XML authors
check their documents, and to help XML editing software to make sure that they produce compliant
documents. While it may seem that authoring XML is a lot more demanding than writing HTML, XML's
advantages in processing ability and flexibility outweigh the disadvantages of its rigidity – closing tags and
carefully watching syntax. When you have just finished writing a long and complicated XML document,
only to find that it doesn't work, the task of going through the code to find out where the error is can seem
daunting. So before you actually use an XML document it is wise to run it through a parser, which checks
the document for you and points out mistakes – such as the absence of a closing tag.

Although, as we have seen declining numbers of people writing HTML "by hand" with just
Notepad, turning instead to authoring programs, so too can we expect a number of XML
editors to appear in the near future.

Primarily there are two types of parser. The simpler non-validating parsers just check for well-formedness
and can be as small as 30-40 Kb, while the more complicated validating parsers also check for validity
using the DTD.

There are several parsers freely available across the Internet, and you are strongly advised to download at
least one. If you can, download more than one, as different parsers handle the reporting of errors in
different ways. Let's take a quick look at some of the parsers that are available.

An added advantage of making sure that the document accurately follows the specification is
that there is no need to put lots of code into the user agent so that they can handle poorly
written documents. The current major Web browsers are notorious for including code that
allows them to display HTML that is not directly compliant with the HTML specification.

Lark by Tim Bray
Lark, written by Tim Bray (one of the editors of the XML specification), was one of the best of the early
tools for checking your work. It is a non-validating XML processor written in the Java programming
language - to use it you need a Java Virtual Machine.

You get a Java Virtual Machine in Microsoft Visual J++ for Windows, the Macintosh
Runtime for Java SDK, OS/2 Warp version 4, or you can download the Sun Java
Development Kit (JDK) or the lighter Java Runtime Environment (JRE) from
http://java.sun.com/

Although Lark does not have a visual user interface it is compact and does a reliable job. It efficiently
builds document trees and matches tags, however it doesn't check that the document is valid – by comparing
the document to its DTD. Tim has also written a validating XML parser, based on the same code as Lark, it
is called Larval. You can download a free copy of both from:

http://www.textuality.com/Lark/

XP by James Clark
XP is a non-validating XML 1.0 parser written in Java. It can check for a document's well-formedness. XP
can be downloaded from:

ftp://ftp.jclark.com/pub/xml/xp.zip

http://java.sun.com/
http://www.textuality.com/Lark/
ftp://ftp.jclark.com/pub/xml/xp.zip

Piecing Together the XML Jigsaw

33

Microsoft XML Parser in Java
Microsoft's XML parser written in Java is a parser which checks for well-formedness of documents and
optionally permits checking of the documents' validity. Once parsed, the XML document is exposed as a
tree through a simple set of Java methods, which Microsoft are working with the World Wide Web
Consortium (W3C) to standardize. If you use this parser it is worth keeping up to date with its development
as Microsoft are constantly updating it. For more details and to download a version visit:

http://www.microsoft.com/xml/

There are, of course, many more parsers available on the Internet and we haven't enough space here to
cover them all. To find out more why not have a look on your favorite search engine?

Linking in XML
With all the new things you'll have to learn, you'll be glad to know that the type of linking you learnt in
HTML is still effective in XML. You can still use a link such as:

Wrox Web Developer

Of course, because we're writing XML now, the <a> element has to be declared in the DTD, as does the
attribute href, even though href and HREF are reserved keywords in the linking specification. However,
as we're using XML we might as well use a more descriptive tag, such as:

<webdevlink href="http://webdev.wrox.co.uk">Wrox Web Developer</webdevlink>

This would then be declared in the DTD like so:

<!ELEMENT webdevlink (#PCDATA)>
<!ATTLIST webdevlink
 xml:link CDATA #FIXED "simple"
 href CDATA #REQUIRED
>

xml:link is a reserved XML keyword used as an attribute to define links; it can take the value
"simple" or "extended". Because the xml:link attribute's value is #FIXED, xml:link does not
need to be included in each instance of the element; it is implied in each <webdevlink> tag, which is
why we can use:

<webdevlink href="http://webdev.wrox.co.uk">Wrox Web Developer</webdevlink>

instead of having to put:

<webdevlink xml:link="simple" href="http://webdev.wrox.co.uk">Wrox Web
Developer</webdevlink>

http://www.microsoft.com/xml/
http://webdev.wrox.co.uk">Wrox
http://webdev.wrox.co.uk">Wrox
http://webdev.wrox.co.uk">Wrox
http://webdev.wrox.co.uk">Wrox

XML Applications

34

The proposals for linking in XML reached working draft status in March 1998, and as you may have
already worked out, they are expressed in XML. Originally known as XLink, then XML-Link, Extensible
Linking Language (XLL) is the current term for the linking languages under development. XLL is based
upon on SGML, HyTime and the Text Encoding Initiative (TEI) – the latter two are used as linking methods
in SGML.

If you are happy with plain links, like those in HTML, there will be little more to learn on this topic.
However, the linking capabilities in XML are far more powerful. Beware, you will probably find that you
will see lots of uses for the new types of link and will want to learn all about it. Using XLL you can:

� Create your own link elements
� Use any element as a linking element
� Create bi-directional links with one-to-many and many-to-one relationships
� Specify traversal behavior – how users get between links
� Create link databases to specify and manage links outside of the documents to which they apply
� Aggregate links
� Transclusion – the link target appears to be part of the link's source document

There are two basic link types:

� Inline links that are specified at the point where the link is initiated
� Out-of-line links that are stored in an intermediary file – a link database

Linking is not covered in the XML specification. Instead there are two separate specifications for linking in
XML:

� XLinks for linking separate XML documents to other XML documents
� XPointers are to be used for addressing the internal structures of XML documents providing specific

references to elements, character strings, and other parts of XML documents, even those without an
explicit ID attribute

Any element can be an XLink, and elements including links are referred to as linking elements. Because
the linking specifications are written in XML, you can create your own tags for links that describe the link
as shown in the webdevlink example. The link then describes the relationship between the objects or
parts of data objects.

The specification for XLinks is available from:

http://www.w3.org/TR/1998/WD-xlink-19980303

XPointers are used in conjunction with URIs to specify a part of a document (or a sub-resource). They can
be used to link to a specific part in the whole of a document, or create a link that just takes part of the
document (as opposed to all of it). Any link that addresses part of a document must be in the form of an
XPointer. However, it is not necessary to include explicit ID attributes in the XPointer language in the same
way that they are needed in HTML and they can provide for specific reference to elements, character
strings, and other parts of XML documents.

The XPointers specification is available from:

http://www.w3.org/TR/1998/WD-xptr-19980303

http://www.w3.org/TR/1998/WD-xlink-19980303
http://www.w3.org/TR/1998/WD-xptr-19980303

Piecing Together the XML Jigsaw

35

Using HTML, if you wanted to link to a specific part of a document the document itself has to be changed
using named anchors. This is not necessary using XLL with XPointers. XLL will also allow custom
applications – without a human user being present – to establish connections between documents, and parts
of documents.

XML Comments
Comments in XML are the same as they are in HTML. They are placed inside these tags:

<!-- comment -->

Good use of comments is almost an art form. You develop your ability to use them as you develop as a
programmer. They are absolutely essential – when you go back to a document after a couple of months,
what seemed so obvious then suddenly is not so clear. Good use of comments also means that others can
use your documents with greater ease. This is particularly important when creating DTDs because you may
want others to use your DTD. The correct placing of comments in XML documents is covered in Chapter 2.

The New Kids on the Block
By now, you'll have got the idea that XML and the other related specifications are far from being stable and
finished. In this section we introduce some of the new specifications that are creating a stir in the XML
community. This doesn't mean that any of the things they claim to be improvements on will disappear, far
from it. Once you have built a solid understanding of building XML applications with this book, you will be
in a strong position to watch for the development of these specifications. We shall be looking at proposals
for:

� XML Namespaces
� XML-Data
� Document Content Declarations

XML Namespaces
One of the advantages of XML that we mentioned in the introduction was that it is possible to create
compound documents from several separate sources. To save us the work it is likely that software modules
will be used to create these compound documents. There are, however, two problems these software
modules must overcome in order to create compound documents:

� Recognizing the markup they are to process (tags and attributes)
� Coping with name 'collisions' in markup

The first problem is self-explanatory; the tools have to know what part of the document they are addressing.
The second problem is less obvious. While the ability to use documents from multiple sources can be very
useful, there is the risk that, with everyone creating their own tags, there will be a collision of names used
for tags or attributes. If some people are merrily creating their own tags while others are following a
standard, it will not be long before two files use the same tagname, for example, to describe different
things. In our CD Library example we used the element <format> to describe whether the CD was an
album or a single. It could be equally possible that another similar document uses a <format> tag to
describe whether the recording was on CD, vinyl, cassette, DVD, MiniDisc, etc. The XML namespaces
proposal was designed to counter these two problems.

XML Applications

36

To get over these hurdles the document constructs must have globally unique names. One way of doing this
is by defining a unique namespace for element types and element attributes.

Here is the W3C definition of XML namespaces:

An XML namespace is a collection of names, identified by a URI, which are used in XML
documents as element types and attribute names. XML namespaces differ from the "namespaces"
conventionally used in computing disciplines in that the XML version has internal structure and is
not, mathematically speaking, a set.

Namespaces associate a prefix with a URI using the following syntax:

xmlns:[prefix]= "[URI of namespace]"

So we could use:

xmlns:wroxcds="http://webdev.wrox.co.uk/books/1525"

to declare the wroxcds prefix, with elements from that domain uniquely identifying those tags within the
compound document.

Now this may all sound like a lot of extra work, so let me put your mind at rest. Without going into too
much detail at this early stage, once the namespace has been defined earlier in the document instance, the
format element doesn't become much more complicated and will end up looking like this:

<wroxcds:format>album</wroxcds:format>

As you may have guessed, the namespaces proposal is still subject to change in the W3C process.

The XML Namespaces Working Draft came out on August 2nd 1998. We come back to the topic of
namespaces in Chapter 4, you can also keep an eye out at:

http://w3.org/TR/1998/WD-xml-names

XML Schemas
Schemas define the characteristics of classes of objects. So in XML, a schema is simply a definition of the
way that the document is marked up. The DTD is actually a good example of a schema in that the DTD
defines a class of documents and the element and attribute types in that class.

At the time of writing the following XML Schema proposals were still at the Note stage of the W3C
proceedings, although they were generating a lot of interest in XML circles:

� XML-Data
� Document Content Description for XML

http://webdev.wrox.co.uk/books/1525
http://w3.org/TR/1998/WD-xml-names

Piecing Together the XML Jigsaw

37

An XML Schema Work Group has since been formed by the W3C, whose job will be to look at and review
the various XML Schema proposals, though it is too early to tell what they will decide to do with them.
Their first step is to create a requirements document which will be used to drive the following discussion.
So it is unlikely that these schemas will stay in their present form. However, we have covered them in this
book to introduce the concept of schemas written using XML syntax, which as you will see have several
advantages over traditional DTDs.

As this suggests, XML Schemas have arisen because of weaknesses in the traditional DTD that we saw
earlier (and come back to in the next chapter). The criticisms of traditional DTDs circle around the
following characteristics:

� It uses a different syntax to XML
� It is difficult to write good DTDs
� It is limited in its descriptive powers
� They are not extensible
� They do not describe XML as data well
� There is no support for the Namespaces proposal

We come back to discussion of this subject in Chapter 3, for the moment let's just take a quick look at what
XML-Data and DCDs are.

XML-Data
XML-Data was a proposal submitted to the W3C on 11th December 1997 as a way of describing schemas
using XML syntax. As you'll see in the next chapter DTDs use a modified form of a notation called
Extended Backus-Naur Form notation (EBNF), and simplicity is not one of its strong points. So the idea
of declaring schemas in XML (as XML-Data does) has been gratefully received.

When we have relatively simple documents, the DTD may seem like a perfectly adequate way of
representing schemas. However, there is also a move on the Web to see XML as data, not just a way of
marking up documents, and when doing so, we benefit from the ability to relate different types of schemas
to our data.

http://www.w3.org/TR/xml-data

or the Microsoft site at:

http://www.microsoft.com/xml

Document Content Description for XML – DCD
This schema for XML documents is even more recent and was only submitted in July 1998. DCD also uses
XML syntax. The basic syntax is introduced in Chapter 3, along with references of where you can find out
more information on XML Schemas. It uses a modified Resource Description Framework (RDF) syntax for
its description and includes a subset of the XML-Data submission in an RDF compliant way.

You can find the note at:

http://www.w3.org/TR/NOTE-dcd

http://www.w3.org/TR/xml-data
http://www.microsoft.com/xml
http://www.w3.org/TR/NOTE-dcd

XML Applications

38

Learning XML-Data and DCD syntax will provide a solid basis for understanding alternative XML
Schemas written in XML syntax. So, you will be equipped to watch out for their progression if you so
desire.

Displaying XML
This is one area of XML development where newcomers often get confused, so we're going to spend a little
time here making your options clear. Hopefully, you will already be excited about the possibilities that
XML can offer you, but you still need to know how XML files can be displayed over the Web. In looking at
style sheets we have already covered half of the ground, so you know a little about how style rules are
applied to the XML file – this section focuses on displaying the XML file in a browser.

Viewing HTML files over the Web is something we have all got very used to, it seems so simple. All you
need to do is type in a URL and press enter, or click on a hyperlink and up comes your page. So that we can
understand the process of outputting XML, let's just have a quick look at how it's done in HTML.

Outputting HTML
This is a simplified description of how the browser gets and displays the page, however it should suffice for
our purposes:

� An HTML document is requested and returned to the client by HTTP (or the file system if it is not
requested over the Internet).

� The browser strips the document of its tags and makes an array of the element's contents.
� The browser must work out what each tag means, look for styling associated with it – remember that the

browser already has a knowledge of HTML (its DTD).
� It must then display the contents on the screen.

XML Browsers
Unfortunately things are not so simple with XML. At the time of writing the major browser manufacturers'
products (up to version 4) did not allow direct viewing of XML in the same way you could view HTML –
you couldn't just open an XML file in your browser and view the contents as you intended. Netscape and
Microsoft have promised XML support in their Communicator 5 and IE5 browsers, but the level of support
is still a little unclear – we discuss this in more detail in the later chapters. (Early beta versions of IE5 show
strong support for the core XML 1.0 Specification, the Document Object Model, Namespaces, CSS and
XSL.) In the mean time, don't panic, this does not mean that the .xml and .xsl/.css files you create
cannot be viewed in Communicator 4 and IE4. What it means is that they have to be converted into HTML
to be viewed - either statically (before the document is viewed), or dynamically (as it is being requested).
But, if browsers could display XML a similar process would need to be undertaken.

� The browser would have to get the XML file, strip it of its tags and make an array of the elements'
content.

� Because the tags in XML are not predefined, the browser would then have to look for information on
how to style each element in a style sheet.

� To display the document, the HTML browser has a display window. However, an XML browser may be
able to convert the document into a different format for display in another application – such as a rich
text format displayed in a word processor – as well or instead.

Piecing Together the XML Jigsaw

39

Because an XML browser would not have any built-in knowledge of how the XML document is to be
displayed, the styling process is – as we have seen – absolutely necessary. For now let's focus on how XML
can be converted to HTML for viewing in a normal Web browser.

Static Conversion
Static conversion takes place before the file is put on the Web server. It involves using a program that takes
the XML file and style sheet, then marries them to create an HTML file that can be viewed through the
browser. It is the HTML file which is then put on the server for viewers to request.

One example of this type of tool is the Microsoft MSXSL Command Line Utility, this marries XML and
XSL files, creating an HTML file. Unfortunately this only works with Windows 95/98 and Windows NT
(x86 only) and IE4. It can be downloaded from:

http://www.microsoft.com/xml/xsl/downloads/msxsl.asp

Briefly here's what it does. From the command line you type:

C:\xslproc\msxsl –i xmlfile.xml –s xslfile.xsl –o result.htm

For those blissfully unaware of what the command-line is (and sometimes ignorance is bliss!), in Windows
9x go to Start | Run and type in exactly the above, substituting the correct file names and the directory the
files are in. You have to make sure that the .xml and .xsl files are in the same folder as the processor for
this to work.

The -i is the input XML file, -s is the XSL style sheet and –o is the output in HTML. The resulting
HTML file can then be put on the Web server or opened in an HTML browser and the style rules will have
been applied.

A less common approach is to run a special program, load in your XML file, then manually apply style
rules to it. An example of this is the Cormorant XML Parser, written by one of our authors – Frank
'Boomer' Boumphrey. It is freely available from our Web site at:

http://webdev.wrox.co.uk/books/1525

http://www.microsoft.com/xml/xsl/downloads/msxsl.asp
http://webdev.wrox.co.uk/books/1525

XML Applications

40

After opening an XML file (shown in the right-hand pane – The XML Tree), style rules can be applied to
each tag in the left-hand pane, by clicking on the appropriate tag and typing in the style rules between the
empty brackets. Then you click on the Apply Style button to make your amendments. Finally clicking the
Make HTML button opens Notepad with the HTML file in it.

Saving this as an .html file allows you to view the original XML in an HTML browser.

And here we see the displayed
HTML document:

While the static approach is fine if you just want to prepare static XML documents for the Web, it is not
very helpful if you want to harness the full power of XML. Creating dynamic pages, that use the data in
your XML files, serving different files to different users requires a dynamic conversion technique.

Piecing Together the XML Jigsaw

41

Dynamic Conversion
The dynamic conversion of XML files allows you to serve different pages to different users. There are a
number of dynamic conversion techniques available that can use:

� MSXSL Command Line Utility
� ActiveX Control
� Java Applet
� JavaScript program

to convert the .xml and .css/.xsl files to HTML on the fly. Again, these options are freely available.
Rather than cover them all here, we will just give you an idea how one of these options works - we will take
a quick look at the MSXSL ActiveX Control.

MSXSL ActiveX Control
The MSXSL ActiveX Control is based on the same code as the MSXSL command-line utility that we have
already seen. Again, it carries the disadvantage that it can only be used with Windows 9x/NT and IE4+.
However, the advantage is that you don't have to know a lot about Java or JavaScript to get it to work.

Simply put, the ActiveX Control can be embedded into a basic HTML page. The ActiveX Control then
downloads the XML file and its style sheet and converts them into HTML. Some simple JavaScript holds
the result of the parsing in the HTML page. So the HTML page is really just a holder for the ActiveX
Control and a wrapper for the returned code. The same ActiveX Control can be used on the Web server.

You can download the MSXSL ActiveX Control from:

http://www.microsoft.com/workshop/c-frame.htm#/xml/default.asp

While this may be the easiest option, if you want cross-browser compatibility, you'll have to look further
into the other two options (JavaScript and Java Applets). Or dip into the possibility of creating the HTML
server-side, something we look at in Chapter 9.

XML in the Real World
So far we have been talking about XML in rather general terms, so let's have a look at some examples
where XML is already in use.

Channel Definition Format
When push technologies started to take off, browser manufacturers needed a way to describe the content of
what was being pushed at your machine. Channel Definition Format (CDF) is an XML-based markup
language which allows Web site authors to let subscribers know when the Web site changes, to varying
degrees. CDF was introduced in IE4 and has significantly helped boost the profile of XML. Documents sent
in the CDF format follow the CDF DTD.

CDF files are just linked to the .html or .asp files in a site. They remain separate, so there is no need to
re-write your site in order to add CDF.

http://www.microsoft.com/workshop/c-frame.htm#/xml/default.asp

XML Applications

42

Note that CDF is
different to the method
that Netscape use. Here
is our WebDev Channel
in IE4. We explore
channels further in
Chapter 13.

Chemical Markup Language
The Chemical Markup Language (CML) was designed by Peter Murray-Rust as a way of supporting the
management of molecular information. Because of the subject area's complexity, the information could not
adequately be rendered using normal HTML. Although CML was originally an SGML application, it has
moved onto XML as a standard for its development.

CML is the nearest thing to an industry standard in the XML community so far. It allows researchers to
capture chemical data in a form that can be reused. By using terms that are common in chemistry such as
molecules, atoms, bonds, crystals, formulas, sequences, symmetries, reactions, etc., it makes the use of the
XML application very straightforward for chemists. The way it handles objects means that documents can
easily be worked on by a computer – searched and indexed. And because CML is written in XML it is
platform independent, unlike the common binary formats used in the molecular sciences.

Professor Murray-Rust also created JUMBO,
which was the first general-purpose XML
browser, written in Java (although it is not
suitable for displaying XML pages in the same
way that the more popular Web browsers do).
Jumbo is shown here demonstrating a document
in CML:

Piecing Together the XML Jigsaw

43

JUMBO can be downloaded from:

http://www.vsms.nottingham.ac.uk/vsms/java/jumbo/

Open Financial eXchange
Open Financial eXchange (OFX) is the result of a collaboration between CheckFree, Intuit and Microsoft to
develop a language that allows financial transactions to take place securely over the Web using the OFX
DTD. Again it was originally an SGML application, although it now uses XML syntax. The proposal also
includes security considerations to give peace of mind when sending credit card numbers over the Internet
supporting Secure Sockets Layer (SSL) and the public/private encryption methods underlying SSL. It is
designed so that it can be embedded in larger applications.

Among the activities which it supports are: consumer and small business banking, consumer and small
business bill payment, bill presentment, and investments, including stocks, bonds and mutual funds. At the
time of OFX was at version 1.5. It is intended to encourage the provision of online financial services. You
can find out more about OFX at their Web site:

http://www.ofx.net/ofx/ab_main.asp

Summary
In this chapter we have taken a closer look at the pieces which go together to make up the XML jigsaw. We
should have prepared you for the coming chapters that address these sections in more detail, after which we
go on to creating some more complex XML applications. We have looked at:

� Well-formed and Valid Documents
� Document Type Definitions
� Document Type Declarations
� Cascading Style Sheets
� Extensible Stylesheet Language
� Parsers
� Namespaces
� XML Schemas
� How to view XML documents
� Some existing XML applications

Hopefully you will already be convinced of the advantages XML can offer. While XML may still be
changing, the following chapters should give you a solid grounding in creating XML applications of your
own. The later chapters will also encourage you that it is not too soon to be writing XML, and the examples
will prove that it is possible to create significant XML applications despite a slight feeling of instability due
to the evolving nature of such a new language.

http://www.vsms.nottingham.ac.uk/vsms/java/jumbo/
http://www.ofx.net/ofx/ab_main.asp

XML Applications

44

	An Introduction to XML
	Who Should Read This Book?
	What You Need to Use this Book
	Stylistic Markup
	Structural Markup
	Semantic Markup

	Tags and Elements
	Attributes
	SGML
	HTML
	Drawbacks of HTML
	How XML Came About

	What is XML?
	Document Type Definition
	Style Sheets
	Viewing XML
	Parsers
	Linking

	XML as Data
	Merging Multiple Documents
	Non-human Interaction

	Resource Description Format
	Microsoft, Netscape, and the W3C
	A Little Bit of Terminology
	XML-Dev
	Are You Convinced Yet?
	Tell Us What You Think
	Customer Support

	Piecing Together the XML Jigsaw
	Document Type Definition (DTD)
	Well-formed and Valid Documents
	Style Sheets
	Advantages of Using Style Sheets
	Cascading Style Sheets

	Extensible Stylesheet Language
	CSS vs. XSL

	Parsers
	Linking in XML
	XML Comments
	XML Namespaces
	XML Schemas
	XML-Data
	Document Content Description for XML – DCD
	Outputting HTML
	XML Browsers
	Dynamic Conversion

	Channel Definition Format
	Chemical Markup Language
	Open Financial eXchange

	Well-Formed and Valid Documents
	Starting the Document: The XML Declaration
	Elements
	Attributes
	Entities
	General Entities
	Parameter Entities
	Entity Declarations and the <!DOCTYPE [...]> Declaration
	Entity References
	Entity References in Attribute Values
	Character Entities

	Escaping data chunks
	CDATA sections
	Comments
	Processing Instructions

	The XML Declaration
	Document Type Declaration
	Document Type Definition
	Element Declarations
	Element Content Models

	Attribute List Declaration
	CDATA Attributes
	ID and IDREF Attributes
	ENTITY Attributes
	Notation Attributes
	Name Token (NMTOKEN) Attributes
	Enumerated Attributes
	Default Values of Attributes
	Multiple Declarations of Attributes
	Normalization of Attribute Values
	xml:space Reserved Attribute

	Entity Declaration
	Parameter Entities
	General Entities
	Entity Sets

	Processing Instructions
	The XML Text Declaration

	Conditional Sections
	INCLUDE Sections
	IGNORE Sections
	Parameter Entities in Conditional Section Declarations

	XML Schemas
	Good DTDs are Difficult to Write
	DTDs Are Not Extensible
	DTDs Do Not Explain XML As Data Well
	DTDs Do Not Provide Support For Namespaces
	DTDs are Limited in their Descriptive Powers.
	DTDs Have No Provision For Default Element Content
	XML-Data: A Simple Start
	XML-Data: Adding Complexity
	Declaring Elements in XML-Data
	Declaring Element Content in XML-Data
	Specifying Element Order
	Content Other Than Element Content
	Defining Attributes in XML-Data
	Example of an Enumeration
	Open Content Models
	Default Element Content

	XML-Data: Adding Complexity II
	Aliases and Correlatives.
	Class Hierarchies
	Key References
	Constraints

	Datatypes
	Design Principles
	Proposed Simplification of RDF Syntax

	DCD - A Simple Start
	Using Elements and Attributes Interchangeably
	Limiting the Syntax

	DCD Nodes and Resource Types
	Referring to Elements and Attributes
	DCD
	ElementDef
	AttributeDef
	InternalEntityDef And ExternalEntityDef
	Datatypes

	Namespaces
	Namespace Syntax
	Declaring the Namespace
	Namespaces and Scope
	Attributes and Namespaces
	'Un'scoping Elements
	Uniquely Branding Elements and Attributes
	Reuse of Schemas
	Educating User Agents
	Internet Explorer 5 (Style Sheets)
	XSL
	RDF
	Basic RDF

	XML Links and Pointers
	Simple links
	Some Terminology
	Difference Between Linking and Addressing
	Pointers in HTML
	Specifying 'Link' Tags
	Suggested XLink Attributes
	xml:link
	href
	inline
	role
	title
	show
	actuate
	behavior

	xml:attribute
	Summary of XML Simple Links
	Terminology
	Inline Extended Links
	Out-of-line Extended Links
	A Small Intranet
	A Large Intranet
	Some Notes on User Agent Behavior
	Adding to Remote Documents
	Maintaining Links
	Locator Syntax
	Absolute locations.
	The Root
	The Origin
	An Element with an id
	An HTML Type Location

	Relative Locations
	Relative Keywords
	Using Keywords
	Node Types

	Selection by Attribute
	Wildcards

	Spanning Location Term
	String Location Term.

	The XML Document Object Model
	What We Will Look At
	General Concepts of Document Models
	Linear Model of a Document
	Tree Model of a Document
	Object Model
	Factory Methods
	XML Objects
	Possible Properties
	Other Types of Node Objects

	Importance of a Common API
	The Object Management Group Interface Definition Language
	An Analogy
	IDL Syntax

	Status of the DOM
	XML Islands
	IE5 XML ActiveX Control
	The Document and Node Interfaces
	The Node Interface
	Node Read-only Attributes.
	Node Factory Methods

	The Document Interface
	Document Read-only Attributes
	Document Interface Factory Methods

	Document and Node Interface Methods in Action
	The CharacterData Interface
	The Attr Interface
	The Element Interface
	The Text Node Interface
	The Comment Interface
	The Processing Instruction Interface
	The DocumentType Interface
	The Notation Interface
	The Entity Interface
	The EntityReference Interface
	The Basic Recursion Loop
	Simple Styling
	Simple Tables
	The Slide Example - a Real Life Application
	The Slide Template

	Other Examples

	Displaying XML
	HTML v. XML
	Style Sheets
	Human Readable Style Sheets
	Machine Readable Style Sheets
	RTF

	Flow Objects
	Styling Flow Objects
	Block and Inline Flow Objects

	Displaying XML in a Browser
	Other Means of Displaying XML
	Displaying XML in Other Media
	Displaying XML on Custom Applications
	What is a CSS Type Style Sheet?
	A Simple CSS Style Rule
	Linking the Style Sheet and the Document
	Linking an HTML Document
	Linking an XML Document

	Anatomy of a Style Rule
	Upper Case v. Lower Case
	Comments and White Space in CSS

	Properties and Values
	Units
	Absolute v. Relative Units
	Inheritable v. Non-inheritable
	Color Values

	Forms of Cascading Style Sheet Rules
	Simple Selector
	Multiple Selectors
	Properties with Multiple Values
	Contextual Selectors
	Conflicting Rules
	Other Selectors

	Cascading and Inheritance
	!important Declarations

	Boxes
	Classes
	Namespaces and CLASS and STYLE Attributes
	Using Namespaces and XML in an HTML Document

	Manual Transformation
	Transforming XML with 'old' XSL
	Spice in Concept
	Spice Points to Note
	Document Rendering

	Spice Flow Objects
	Modifying a Flow Object

	Modes and Out of Sequence Rendering
	Media Dependent Style Sheets
	Graphics
	Linking in Spice Style Sheets
	Summary of Spice

	Extensible Stylesheet Language (XSL)
	Introduction
	Source Document
	Using CSS
	Using XSL

	Building the Result Tree from the Source Tree
	Inheritance
	Default Match
	Other Styling Namespaces

	Other xsl:stylesheet Attributes
	result- ns
	default-space
	indent-result

	Simple matches
	Matching By Name
	Matching By Ancestry
	Matching Several Names
	Matching the Root
	Wildcard Matches
	Built-in template rule
	Matching By ID
	Matching By Attribute
	Matching By Child
	Matching By Position

	Resolving Match Conflicts
	Simple Formatting Objects
	page-sequence
	simple- page-master
	queue
	sequence
	block
	list
	rule- graphic
	graphic
	score
	block- level-box
	inline- box
	page- number
	link
	link-end-locator
	character

	Converting CSS to XSL
	Simple Processing
	xsl:process-children
	Adding a Text Flow Object
	xsl:text
	xsl:process

	Missing formatting objects
	More complex styling
	Treatment of White Space
	Declaring the result- ns

	The Future of XSL

	XML and the Data Tier
	Methods of Delivering XML
	SQL Server Generated XML
	Web Tasks for Auto- generating XML Files

	Using the SQL Server Web Assistant
	Creating XML with Stored Procedures

	Middleware Generated XML
	HTML Form to Update a Phone List Entry
	Summary

	Server-side XML
	The Client
	Setting Up Queries
	Getting Lists of Papers
	Viewing the Paper

	The Server
	Issuing Queries
	Generating Responses

	Trade-offs in Client-Server Development
	Transmission Issues
	HTTP Requests
	File Transfer
	Custom Sockets Programming

	User Interface
	Packaging Search Parameters as XML
	Handling XML Returned from the Server
	Global Server Objects
	Loading an XML String
	Getting to the Root of the Parse Tree
	Setting Up Database Resources
	Walking the Parse Tree
	Retrieving the Parameters
	Getting Answers to the User’s Questions
	Data Retrieval Using ActiveX Data Objects
	Dynamically Generating XML

	Preparing to Parse XML on the Client
	Preparing for Results
	Listing Summary Information in a Table
	An ASP for Presentation
	How the XSL Processor Works
	Placing Formatted HTML into the Page
	Combining XML Tags and XSL Rules

	XML Namespaces
	XML-Data

	Case Study 1 - The Travel Broker
	The Solution
	Three-Tier Architecture
	Data Services
	Business Services
	User Services

	Three-Tier Architecture using XML
	Data Services – XML Document Generation
	Business Services – Data Integration
	User Services – HTML Presentation

	Databases
	Travel Package Database
	Weather Database

	XML DTDs
	Attributes vs. Elements
	Travel Broker DTD
	Weather DTD

	Implementation with ASP and ADO
	Travel Server
	Weather Server

	Example
	Implementation
	TBIntegrator
	MSXSL.DLL
	Code Details

	Example
	Formatting on the Client with CSS
	Formatting on the Server with XSL
	XSL Document

	Implementation

	The Weeds of El Limon: A Customized XML Based Web Publishing System
	Why Plain Web Pages Weren't Good Enough
	Why XML?
	Why Static Web Pages?
	Why Java?
	Writing XML
	Choosing an XML Parser

	An Example Document
	The DTD
	Big Decisions
	Defining Elements
	Evolution

	A Three-Layer Architecture
	The Data Layer
	Species.java
	Summary

	The Input Layer
	MSXML: Hacking the Source

	The Input Layer: Turning XML into Species
	MSXMLSpeciesFactory
	Attaching Images
	Summary

	The Output Layer
	Designing the HTML

	Generating HTML
	Generator.java
	GeneratePlant.java
	GenerateIndex.java
	GenerateLatin/Common.java
	GenerateFamily.java

	Building the Weeds on Windows
	Building the Weeds on Unix

	Channel Definition Format (CDF)
	Background
	How Using CDF Technology Can Help
	Creating the CDF File
	Avoiding CDF File Errors
	Back to the CDF File Creation
	How PRECACHE Affects LEVEL
	Using LASTMOD
	More ABSTRACTs and TITLEs

	Testing the CDF File
	Adding Content to the CDF File
	Encoding Characters for CDF

	Adding Further Pages to the CDF File
	Adding an Active Screensaver
	Automating Channel Update
	Customizing the Channel with Personalized Logos and Icons

	Languages and Notations
	Extended Backus-Naur Form (EBNF) Notation
	#xN
	[a-zA-Z], [# xN-# xN]
	[^abc], [^# xN# xN# xN]
	[^a-z] [^# xN-# xN]
	"string" 'string'
	(expression)
	A?
	A B
	A | B
	A - B
	A+
	A*

	The XML Specification
	The CSS1 Specification
	The CSS2 Specification

	XML Resources and References
	Chapter 3 XML Schemas
	Chapter 4 Namespaces
	Chapter 5 Linking in XML
	Chapter 6 XML and the DOM
	Chapter 7 Displaying XML
	CSS
	Spice
	DSSSL-Online or XS

	Chapter 9 XSL
	Chapter 13 Channel Definition Format

	Extensible Markup Language (XML) 1.0 Specification
	Status of this document
	Table of Contents
	Appendices
	Origin and Goals
	Terminology
	Well-Formed XML Documents
	Characters
	Common Syntactic Constructs
	Character Data and Markup
	Comments
	Processing Instructions
	CDATA Sections
	Prolog and Document Type Declaration
	Standalone Document Declaration
	White Space Handling
	End-of-Line Handling
	Language Identification
	Start-Tags, End-Tags, and Empty-Element Tags
	Element Type Declarations
	Element Content
	Mixed Content

	Attribute-List Declarations
	Attribute Types
	Attribute Defaults
	Attribute-Value Normalization

	Conditional Sections
	Character and Entity References
	Entity Declarations
	Internal Entities
	External Entities

	Parsed Entities
	The Text Declaration
	Well-Formed Parsed Entities
	Character Encoding in Entities

	XML Processor Treatment of Entities and References
	Not Recognized
	Included
	Included If Validating
	Forbidden
	Included in Literal
	Notify
	Bypassed
	Included as PE

	Construction of Internal Entity Replacement Text
	Predefined Entities
	Notation Declarations
	Document Entity
	Validating and Non-Validating Processors
	Using XML Processors
	A. References
	A.1 Normative References

	A.2 Other References
	B. Character Classes
	C. XML and SGML (Non-Normative)
	D. Expansion of Entity and Character References (Non- Normative)
	E. Deterministic Content Models (Non-Normative)
	F. Autodetection of Character Encodings (Non-Normative)
	G. W3C XML Working Group (Non-Normative)

	XML-Data & DCD Datatypes
	Specific Datatypes

	XML DTD for XML-Data
	CSS1 Properties
	Font Properties
	fantas
	y
	Color and Background Properties
	Text Properties
	Box Properties
	Classification properties

	CSS2 Properties
	Box Model
	Visual Rendering Model
	Visual Rendering Model Details
	Visual Effects
	Generated Content and Automatic Numbering
	Paged Media
	Colors and Backgrounds
	Font Properties
	Text Properties
	Lists
	Tables
	User Interface
	Aural Style Sheets

	Support and Errata
	Wrox Developer's Membership
	Finding an Errata on the Web Site
	Adding an Errata to the Sheet Yourself
	E-mail Support
	Customer Support
	Editorial
	The Authors
	What we can't answer
	How to tell us exactly what you think

	Index

