

 Styling and Style Sheets in
General

From the beginning, HTML has been a mixture of semantic, stylistic and structural markup. Structural
markup was predominant in the early versions of HTML. However, HTML has now developed to the
point where appearance can be seen as the more dominant force.

A style sheet is nothing more than a written set of rules laying out the style of a document, and is usually
quite separate from the document to be marked up, or at the least is contained in a separate section of the
document.

Styling markup on the other hand is markup on the document itself indicating how certain parts of the
document are to be styled, and in HTML consists of certain tags and their attributes.

As such, styling markup is quite different from semantic and structural mark up. Structural markup
defines the structure of a document, "put a paragraph here, put a heading there", and semantic markup
gives information about the content of the document part. It states that "this part of a document is the
title, this part is an address" etc.

In this chapter, as a prelude to getting down to a serious examination of style sheets, we will examine the
following:

� Styling in HTML, and the complications this can introduce into your coding
� Styling using style sheets, and how this can simplify your coding
� Summarize the advantages of style sheets.

We will do this by looking at how a typical simple page is styled in HTML, and hopefully in the process

Professional Style Sheets

20

the problems associated with HTML styling will become obvious. Just in case they don't we will review
them, and then we will look at the potential for style sheets to untangle the mess. We will also take a
quick historical look at the reasons behind this mess.

We won't actually look at any of the details of style sheets in this chapter we will leave that to later. First
the emphasis will be upon the potential of style sheets to untangle the mess that exists now.

Styling in HTML
Styling in HTML is carried out using a combination of techniques. We will only cover their use very
briefly here as books on HTML, such as Instant HTML Programmer's Reference, ISBN 18610001568
from Wrox Press, give more than adequate coverage. We will then run through a quick tutorial. If you
don't know much about styling using HTML this should be enough for you to get a basic grasp of the
subject and, more importantly, make you realize that there must/should be a better way.

First let's look at the various tags and attributes used to style HTML documents.

Styling Tags
These can be divided into tags concerned with paragraph and document layout, and those involved with
text and font styles. Also to be considered are attributes of the tags that alter the elements display in some
way.

Document Layout
The following table shows the tags most commonly used for document layout.

HTML Tag Definition

 Causes a line break to be inserted into the text. It is also useful for creating
horizontal white space in HTML.

<CENTER> Anything contained between the <CENTER> tags will be centered on the page. This
tag has no good substitution in style sheets, because the browsers do not implement
correctly the properties that are designed to center the elements centering. This
means that until the browsers improve the <CENTER> tag still has a place in a
style-sheet driven document.

<H1><H2>
<H3><H4>
<H5><H6>

The various headings, display text with a font size that is dependent on the browser,
and have a variable amount of white space before or after them.

<HR> According to many design gurus this should be given a ceremonial burial. Always
consider using white space to divide up your page rather than the using horizontal
rule.

<P> The paragraph is the 'work-horse' of HTML. It creates a block of text, usually with
a line of white space before and after it.

Styling and Style Sheets in General

21

Text and Font Styling
There are numerous tags that can be used for styling, many of them redundant and seldom used. For a full
list see Appendix B of Instant HTML Programmer's Reference ISBN 18610001568 from Wrox Press or
check out the Ultimate HTML Reference Database at the Reference section of
http://rapid.wrox.co.uk. Here, however, are some of the more commonly used ones. All these
tags really act as switches to switch a particular type of styling on or off. Switching on and off style,
however, is not a good thought process when we are thinking about styling a page. Instead we need to
think of blocks of content with a certain style applied to them. A later paragraph entitled Switches and
Style Blocks deals with this issue.

HTML Tag Definition

 Turns on bold text

<I> Turns on italic text

<U> Turns on underlined text

<S> Turns on strikethrough text

 Designed to emphasize text. The text is usually rendered in italic.

<PRE> Maintains all the original formatting. Type is usually monospaced.

 Sets font face, size and color. This is the most powerful of all the HTML tags and
as such deserves a subheading of its own.

The FONT Element
The font element is used to switch font characteristics on and off. Among its attributes it has:

Size
This takes the form size=n, where n can be any number from 1 to 7. SIZE=3 corresponds to a font size
used in the main text and 7 to an H1 font size. The font can also be made larger by using, for example,
SIZE=+2 which would make the font size two sizes bigger, or SIZE=-1 which would make it one size
smaller.

Face
This specifies the font family you want to use. It takes the form:

FACE= "fontname1, fontname2, fontname3 etc."

The browser will check the user's system for the requested font in the order specified.

Color
Specifies the font color as an RGB hexadecimal number, for example,

http://rapid.wrox.co.uk

Professional Style Sheets

22

COLOR=#FF0000

This would produce a red colored text.

Styling Attributes
Elements can also take attributes that style and format the document. The following table is a partial list
of styling and formatting attributes.

HTML Attribute Definition

BGCOLOR Can be used on the <BODY> tag or any of the table tags to provide a
background color.

BACKGROUND Takes a URL as its value. Can be used on any of the table or body tags
to provide a tiled image.

LINK, VLINK,
ALINK

Sets the color of a link using an RGB hexadecimal.

TEXT Used on the <BODY> tag. Sets the text color for the page.

LEFTMARGIN,
RIGHTMARGIN and
TOPMARGIN

The syntax is LEFTMARGIN=n, where n is the size of the margin
expressed in pixels. Only works on IE.

CLEAR An attribute that can be used with the
 or <BODY> tags, it takes
the values CLEAR=LEFT | RIGHT | ALL | NONE. If, for example, the
tag <BR CLEAR=LEFT> is employed, the browser will wait until there
is a clear margin on the left before rendering the text. The pipestem
symbol "|" indicates alternatives.

ALIGN Applies to numerous elements and is used to align the element. The
syntax is ALIGN=LEFT | RIGHT | CENTER

Whereas the following table refers to styling attributes associated with tables:

HTML Attribute Definition

BORDER Sets the border width in pixels.

BORDERCOLOR Sets the border color.

CELLPADDING CELLPADDING is the amount of space between the cell content and
the border.

Styling and Style Sheets in General

23

HTML Attribute Definition

CELLSPACING CELLSPACING is the amount of space between individual cells.

HEIGHT Specifies the height either as a percentage or in pixels.

WIDTH Specifies the width either as a percentage or in pixels.

Positioning
This was a perennial headache for the web author, until the advent of style sheets. Let's take a look at a
few of the tricks and workarounds they came up with in the interim.

Using Tables
Because authors felt the need to control the placement of their content on the screen they took to using
tables to do this. This worked fairly well but at the expense of complicating document design and making
the source document difficult to read.

The following code would produce a nice margin down the left side of any written material.

<TABLE WIDTH=80%>
<TR>
<TD WIDTH=15%>

</TD WIDTH=80%>
<TD>All the text goes here. We have made this text long enough to wrap to
illustrate the margin.
</TD>
</TR>
</TABLE>

The following screenshot shows the above in Communicator.

We have also repeated the code with the border switched on by setting:

Professional Style Sheets

24

<TABLE WIDTH=80% BORDER=1>

Note, we have added content in the form of a
 to the empty table cell, otherwise some browsers will
not render the cell.

So in order to position text accurately on the page, the web page author would have to create multiple
tables and then ensure they were invisible to the viewer. Not terribly intuitive. Before the arrival of style
sheets, the only alternative to this was to use the single pixel trick, which we cover next.

Using the Single Pixel Trick
Although tables give quite a bit of control over positioning, to precisely position content without using
style sheets, we must resort to the single pixel trick.

The trick here is to make a .gif image consisting of a single pixel, then make that pixel transparent. We
then use the VSPACE and HSPACE attributes to provide a border round the single pixel.

We can use this trick for precise positioning of objects and text, and also to make sure that our tables are
the precise dimensions we want them.

<HTML>
<BODY BGCOLOR=WHITE>

 <BR CLEAR=RIGHT>

 Here is some text which should have a border of 50 pixels above it and a
margin of 50 pixels to the left of it

 <BR CLEAR=RIGHT>

 Here is some text which should have a border of 50 pixels above it and a
margin of 50 pixels to the left of it.
 <BR CLEAR=LEFT>

 This line of text is indented 10 pixels. We have used the solid color
here, but this of course should be converted to a clear pixel in our
final document.
</BODY>
</HTML>

The above code shows how to accomplish this using the single pixel trick. In the second paragraph of text
we have used a red colored single pixel with height and width properties so that you can visualize the
process.

In fact you are encouraged to do this while you are laying out your documents, just remember to halve the
width and height when you substitute the VSPACE and HSPACE attributes, because these are added to
both sides of the single pixel image.
The following screenshot shows what this looks like in practice.

Styling and Style Sheets in General

25

Using a combination of tables and the single pixel trick it is really possible to lay out a page any way we
want. The problem with this approach is that the HTML source rapidly becomes cluttered up with styling
tags. To be effective each page really has to be hand crafted.

To change the look and feel of a series of pages would be a huge task. In fact the effort would be almost
as great as designing the pages in first place, without the excitement that goes with creativity.

The single pixel trick is a hack, a useful hack but a hack none the less. Thank goodness style sheets will
obviate the need for it.

Using Images
The final way to make sure that the page is presented just as we want it is to convert the content to an
image. However, this is a very wasteful use of resources. For example, the very simple page above is 450
bytes when sent as HTML and 15,000 bytes when sent as a 16-color .gif.

Again images can be expensive (good artists don't come cheap), they take time to download plus, you
can't search on them, you can't copy the text, you can't change the size of the image there are major
maintenance problems and so on and so on.

Image elements are best reserved for headings with special fonts and for visual clipart, .gif, and .jpg
images.

Professional Style Sheets

26

Switches and Style Blocks
It is customary to think of a tag as a switch that switches various styles on and off. This may be a valid
way of thinking of style if one is writing a simple text document, but it is a poor thought process to use
when we are styling anything more sophisticated.

Whether we are designing a page for a magazine, a newspaper, or the Web, we are moving blocks of text
and images around our page. It is, therefore, better to think of styling in terms of styling blocks of
content.

All the styling languages make use of this concept, so we should force ourselves to think in these terms
straight off. Cascading Style Sheet language (CSS) uses the box concept, eXtensible Style Language
(XSL) and Document Style Semantics and Specification Language (DSSSL) use the flow-object concept,
but they mean the same thing—blocks of material to which we can apply styling.

Experience from teaching style languages tells me that, although this is an easy concept for beginners to
grasp, it can be a difficult concept for experienced HTML buffs to adapt to. So if you fall into the latter
category, it would be helpful to start thinking in terms of blocks of content rather than switches.

An Example of Styling with HTML
In order to understand what kind of styling is possible with old HTML let's look at an example. A good
and fairly simple example would be a page from a Wrox Instant book. We have chosen page 82 from
Instant HTML Programmer's Reference. Read the text on this page as well, it is applicable. The code for
this page is listed as Ch1_1.htm.

First let's set the page background. The following line provides a soothing mint green.

<BODY BGCOLOR="#EEFFEE"><!--A pleasant mint green-->

Now we need to set the outline of the page. The best way to do this is via a table with a border. The width
of the page should be about 6 inches. As we can only depict the width in pixels, in HTML we need a ruler
and experimentation to carry this out. As a rule of thumb there are about 80 pixels to a logical inch, but
the actual pixel size will depend on your monitor.

The "logical inch" is what your monitor thinks an inch should be. When I ask the browser
to draw a box 6in. wide on my monitor the actual measured width is 8.5in, which makes
the "logical inch" about 1.4 actual inches on my monitor. The measurement in the y
direction may even be different. Most programming languages have a function that allows
you to get this information, in VB it is Screen.TwipsPerPixelX and
TwipsPerPixelY.It is likely that XSL will have a similar function built into it, but it is
unlikely that we will be able to have such precise control in CSS.

What we come up with is the following:

<!--The page itself-->
<TABLE BORDER="1" BGCOLOR="white">

<TR>
<TD WIDTH="500">

Styling and Style Sheets in General

27

The page color of course is white, the border of the table we have depicted as one pixel thick. Because we
wanted to make sure of the height of the page as nine inches, we used the Single Pixel Trick, which we
demonstrated earlier in this chapter.

Now we want to set the various elements in the page, and to get these set in exactly the right position we
will nest in our main table some more tables and use the single pixel trick over and over again.

First we will put in the page heading. A good trick is to leave the border switched on until we have got
the material exactly where we want it, then switch it off to display the completed page.

<TABLE BORDER="0" BGCOLOR="white">
<!--page heading type-->
<TR>
 <TD>

 Chapter 4 - Images and Inclusions
 </TD>
</TR>
</TABLE>

The first lot of text is a regular paragraph. If we take care with our table construct we can use it as a
template for all our other paragraphs.

<TABLE WIDTH=480 CELLPADDING="10" BORDER="0" BGCOLOR="white">
<!--para type-->
<TR>
 <TD>

 In fact this page uses a table to seperate the page......etc
 </TD>
</TR>
</TABLE>

The VSPACE attribute will have to be set for each individual paragraph. Note how we have used the
CELLPADDING attribute to provide space above and below the paragraph. We could also have used the
single pixel trick, but this way is neater.

As an exercise for you, we have not made VSPACE high enough and so the third line does not line up
with the others. Try adjusting it so that every thing looks just right.

Now to format the block of code shown on the page.

<!--Set the gray box in from the edge of the page.-->

<TABLE WIDTH=430 BORDER="0" BGCOLOR="#CCCCCC">
<TR>
 <TD>
<!--code type-->

Professional Style Sheets

28

 The internet is the most cost effective way to

 advertise <I>your</I> business today ... etc
 </TD>
</TR>
</TABLE>

Note the use of the escape entities for < and >. There are no new tricks here just a lot of fiddling about.
The same with the heading

<TABLE BORDER="0" BGCOLOR="white">
<TR>
 <TD>

<!--Sub Heading 2 type-->
 <I>Using the HTML 4.0 'float' Style Property</I>
 </TD>
</TR>
</TABLE>

One of the problems we run into is that in HTML we can't set the font size exactly, we have to use a scale
of 1-7, where 3 corresponds to what the default value for the browser usually is.

Again we have to fiddle around and experiment to make things look right.

The rest of the page doesn't introduce any thing new. Here's the complete code for the page.

<HTML>
<TITLE> Chapter1 Tutorial1. A Wrox Page in HTML.</TITLE>
<BODY BGCOLOR="#EEFFEE"><!--A pleasant mint green-->

<!--set our page in about 1" from the left of the screen-->

<!--The page itself-->
<TABLE BORDER="1" BGCOLOR="white">
<TR>
<TD WIDTH="500">

<TABLE BORDER="0" BGCOLOR="white">
<!--page heading type-->
<TR>
<TD>

Chapter 4 - Images and Inclusions
</TD>
</TR>
</TABLE>

Styling and Style Sheets in General

29

<TABLE WIDTH=480 CELLPADDING="10" BORDER="0" BGCOLOR="white">
<!--para type-->
<TR>
<TD>

In fact this page uses a table to seperate the page into two sections.
We'll look at how tables work in chapter 6. In the meantime the important
line is the one that inserts the left-hand image:
</TD>
</TR>
</TABLE>

<!--Set the gray box in from the edge of the page.-->

<TABLE WIDTH=430 BORDER="0" BGCOLOR="#CCCCCC">
<TR>
<TD>
<!--code type-->

The
internet is the most cost effective way to
advertise
<I>your</I> business today ... etc
</TD>
</TR>
</TABLE>

<TABLE WIDTH=480 CELLPADDING="10" BORDER="0" BGCOLOR="white">
<!--para type-->
<TR>
<TD>

You can see that we've used the value "LEFT" for the ALIGN
attribute (the quotaton marks are in fact optional, because the value is a
single word with no spaces). This causes the image to be aligned with the
left margin, and the text wraps to the right of it. If it appears to be too
close, we could use the HSPACE and the VSPACE attributes to
give it more room, although in our case we wanted it to wrap as closely as
possible.
</TD>
</TR>
</TABLE>

<TABLE BORDER="0" BGCOLOR="white">
<TR>
<TD>

<!--Sub Heading 2 type-->

<I>Using the HTML 4.0 'float' Style Property</I>
</TD>
</TR>
</TABLE>

Professional Style Sheets

30

<TABLE WIDTH=480 CELLPADDING="10" BORDER="0" BGCOLOR="white">
<TR>
<TD>
<!--para type-->

Of course, we should be using the new HTML 4.0 style sheet standards to
place our image, instead of the attributes of the
element directly:
</TD>
</TR>
</TABLE>

<!--Set the gray box in from the edge of the page.-->

<TABLE WIDTH=430 BORDER="0" BGCOLOR="#CCCCCC">
<TR>
<TD>
<!--code type-->

<IMG SRC="world.gif"

<!--indent STYLE>-->

STYLE="float:left;width:75, height:73; >"
</TD>
</TR>
</TABLE>

<TABLE WIDTH=460 CELLPADDING="10" BORDER="0" BGCOLOR="white">
<TR>
<TD>
<!--para type-->

Here, the CSS1 float property is used to move the element to the
left margin of the page and wrap the text round it. This will only work in
browsers that support the CSS1 standard, but you could always take the
'belt and braces' approach and include both the direct attributes and the
style attribute with the matching properties:
</TD>
</TR>
</TABLE>

<!--Set the gray box in from the edge of the page.-->

<TABLE WIDTH=430 BORDER="0" BGCOLOR="#CCCCCC">
<TR>
<TD>
<!--code type-->

<IMG SRC="world.gif" ALIGN="LEFT" WIDTH=75 HEIGHT=73

<!--indent STYLE>-->

STYLE="float:left;width:75, height:73; >

Styling and Style Sheets in General

31

</TD>
</TR>
</TABLE>

<TABLE WIDTH=480 CELLPADDING="10" BORDER="0" BGCOLOR="white">
<TR>
<TD>
<!--para type-->

 The only problem now is that behavior may be erratic in browsers that
partly support CSS1. If they don't handle it properly, and it takes
precedence over the direct properties (as it should), the results could be
less than appealing.
</TD>
</TR>
</TABLE>

<TABLE BORDER="0" BGCOLOR="white">
<TR>
<TD>
<!--Sub Heading 1 type-->

The Single Pixel GIF Trick
</TD>
</TR>
</TABLE>

<TABLE WIDTH=480 CELLPADDING="10" BORDER="0" BGCOLOR="white">
<TR>
<TD>
<!--para type-->

 This is a useful trick that many web authors use to achieve precise
control over layout and formatting. It's a little out of date now, because
you should be using style sheets (see the previous chapter) to control the
placement and alignment of all the elements in your pages. However, until
more browsers fully support the style sheet proposals, it can be useful.
</TD>
</TR>
</TABLE>

<TABLE WIDTH=480 CELLPADDING="10" BORDER="0" BGCOLOR="white">
<TR>
<TD>
<!--para type-->

 It basically works like this. You have an image, in this case
<CODE>dot_clear.gif</CODE> which consists of one pixel. The
pixelcolor is defined as being the invisible, a trick that GIF version 89a
files can achieve. When you want to add a precise amount of space across or
down, you insert the image and use the HSPACE and/or the
VSPACE attributes to move the following elements around as required.
The code is something like this:

Professional Style Sheets

32

</TD>
</TR>
</TABLE>

<!--Set the gray box in from the edge of the page.-->

<TABLE WIDTH=430 BORDER="0" BGCOLOR="#CCCCCC">
<TR>
<TD>
<!--code type-->

</TD>
</TR>
</TABLE>

<!--PAGENUMBER.-->

<TABLE WIDTH=50 BORDER="0" BGCOLOR="white" >
<TR>
<TD VALIGN=center>

82

</TD>
</TR>
</TABLE>
</TD>
</TR>
</TABLE>
</BODY>
</HTML>

The following screenshot shows how it displays on IE4.

Styling and Style Sheets in General

33

It looks the same on Communicator. On my monitor it is 6 inches wide, it may be more or less on your
monitor.

So, styling with HTML is complex, messy and time consuming. To see a summary of problems facing the
web designer before the advent of style sheets, check out an article called "Severe Tire Damage on the
Information Superhighway" by David Siegel, which you'll find at:
http://www.dsiegel.com/damage/index.html.

OK, we've seen the problems, now let's see the solution.

Styling with Style Sheets
Style sheets changed all this. They made styling much quicker, easier and cleaner. We aren't going to
cover them in detail in this chapter, we'll leave that until Chapter 2. We are just going to show you how
great they are by repeating the same tutorial using a style sheet instead of HTML.

An Example of Styling with Style Sheets
The picture below shows how our page that has been styled using HTML and a style sheet looks.

http://www.dsiegel.com/damage/index.html

Professional Style Sheets

34

The next figure shows the HTML.

<HTML>
<HEAD>
<TITLE> Chapter1 Tutorial1. A Wrox Page in HTML/CSS.</TITLE>
<LINK REL="stylesheet" TYPE="text/css" HREF="ch1_2.css">
</HEAD>
<BODY>
<DIV CLASS="page">

<DIV CLASS="phead">
Chapter 4 - Images and Inclusions
</DIV>

<DIV CLASS="para">
In fact this page uses a table to seperate the page into two sections.
We'll look at how tables work in chapter 6. In the meantime the important
line is the one that inserts the left-hand image:
</DIV>

<DIV CLASS="code">

The internet is the most cost effective way to

advertise <I>your</I> business today ... etc

</DIV>

<DIV CLASS="para">

Styling and Style Sheets in General

35

You can see that we've used the value "LEFT" for the ALIGN
attribute (the quotation marks are in fact optional, because the value is a
single word with no spaces). This causes the image to be aligned with the
left margin, and the text wraps to the right of it. If it appears to be too
close, we could use the HSPACE and the VSPACE attributes to
give it more room, although in our case we wanted it to wrap as closely as
possible.
</DIV>

<DIV CLASS="head2">
Using the HTML 4.0 'float' Style Property
</DIV>

<DIV CLASS="para">
Of course, we should be using the new HTML 4.0 style sheet standards to
place our image, instead of the attributes of the
element directly:
</DIV>

<DIV CLASS="code">
<IMG SRC="world.gif"

<!--indent STYLE>-->

STYLE="float:left;width:75, height:73; >
</DIV>

<DIV CLASS="para">
Here, the CSS1 float property is used to move the element to the
left margin of the page and wrap the text round it. This will only work in
browsers that support the CSS1 standard, but you could always take the
'belt and braces' approach and include both the direct attributes and the
style attribute with the matching properties:
</DIV>

<DIV CLASS="code">
<IMG SRC="world.gif" ALIGN="LEFT" WIDTH=75 HEIGHT=73

<!--indent STYLE>-->

STYLE="float:left;width:75, height:73; >
</DIV>

<DIV CLASS="para">
The only problem now is that behavior may be erratic in browsers that
partly support CSS1. If they don't handle it properly, and it takes
precedence over the direct properties (as it should), the results could be
less than appealing.
</DIV>

<DIV CLASS="head1">
The Single Pixel GIF Trick
</DIV>

<DIV CLASS="para">
This is a useful trick that many web authors use to achieve precise control
over layout and formatting. It's a little out of date now, because you
should be using style sheets (see the previous chapter) to control the

Professional Style Sheets

36

placement and alignment of all the elements in your pages. However, until
more browsers fully support the style sheet proposals, it can be useful.
</DIV>

<DIV CLASS="para">
It basically works like this. You have an image, in this case
dot_clear.gif which consists of one pixel. The pixelcolor is defined
as being the invisible, a trick that GIF version 89a files can achieve.
When you want to add a precise amount of space across or down, you insert
the image and use the HSPACE and/or the VSPACE attributes to
move the following elements around as required. The code is something like
this:
</DIV>

<DIV CLASS="code">

</DIV>

<DIV CLASS="pnum">
82
</DIV>

<!--end of div class=page-->
</DIV>
</BODY>
</HTML>

Finally there is the style sheet.

/* style sheet for ch1_2.htm*/

BODY{

background-color:#EEFFEE;
}

DIV.page{

background-color:white;
margin-left:0.75in;
border:solid 1px;
width:6in;
}

DIV.phead{
font:bold 12pt arial,sans-serif;
margin-top:0.2in;
margin-left:0.375in;

background-color:white;
}

DIV.para{
font:normal 12pt 'times new roman',serif;
margin-left:0.5in;

Styling and Style Sheets in General

37

margin-top:1em;
margin-bottom:1em;
margin-right:0.5in;
background-color:white;
}

DIV.code{
font:normal 9pt 'courier new',monospaced;
margin-left:0.5in;
padding-left: 0.25in;
margin-right:0.5in;
border:none 1px;
background-color:#CCCCCC;
}

DIV.head1{
font:bold 16pt arial,sans-serif;
margin-left:0.375in;
background-color:white;
}

DIV.head2{
font:bold italic 12pt arial,sans-serif;
margin-left:0.375in;
background-color:white;
}

DIV.pnum{
font:bold 16pt arial,sans-serif;
margin-top:0.25in;
padding-bottom:0.25in;
margin-left:0.25in;

}

SPAN.indent{
margin-left:0.4in;
}

The output pages are virtually identical. The page using a style sheet looks better because it is 6 virtual
inches across (8.5 real inches on my computer screen) as opposed to 6 actual inches in the page styled
with HTML tags.

Look at the HTML page and compare it with the tagged page. This page is actually readable without
much effort.

Now look at the Style Sheet page and, although you may not know any CSS, at this stage you can tell at a
glance that the styling language is logical, understandable and precise. We'll go into detail on how to
create and apply style sheets in the next chapter.

HTML Styling versus Style Sheet Styling
First, let's examine the problems that come out of our HTML styling example.

Professional Style Sheets

38

Time is Money
In the first example above we tackled a reasonably straight forward job of formatting a file using some
tried and trusty HTML guru work-arounds and tricks, and the result is just as we wanted it.

The problem is connected to how long the entire exercise took. I started off by just typing in the text, (I'm
a slow typist, so I didn't want that to flavor this experiment) and then timed how long it took to get every
thing right. It took almost two hours. I then tried another page using the templates that I had already
created, and it took me almost an hour. Calculate that for the book. 400 pages times 3/4 hour (assume I
get better as I go along), times $25 an hour (and that's cheap). The end result is $7500 to put up a web
site containing these pages in this format.

Actually most commercial pages, are generated on-the-fly using script, or are generated
using proprietary software.

Also look and see how difficult it is to read the actual content in all that formatting, consider that
intranets are putting up hundreds of pages of information a day, and you realize that we have a major
problem with HTML type styling. The answer of course is style sheets. Later on we will consider the
advantages of CSS type style sheets, but before doing this lets look at some of the other problems
associated with the current HTML type of styling.

Download Speeds
Most pages use a lot of images to compensate for the difficulty of styling with HTML tags, and this takes
time to download. As an experiment try going to a graphics heavy site, and navigate between their pages.
For example:

http://www.microsoft.com

On my 56 kbps modem it takes between 30 and 40 seconds for each page of this site, which makes heavy
use of headers in the form of graphics, to download.

Now go to a site that uses style sheets.

http://www.hypermedic.com/style

After emptying my cache, it took less than a second for each page to download, making for very fast
navigation.

Admittedly some sites need to be graphics heavy, but users certainly appreciate the speed that style sheets
bring.

Even if we don't use graphics, but use HTML type styling, the pages themselves are larger. The Wrox
page in the example above is 7K. This is twice the size of the page using style sheets and those extra
bytes all come from the styling tags.

Admittedly the style sheet file that is necessary to display non HTML styled pages weighs in at 1K, but
this same sheet could be used for all 400 pages of the book. This represents an overall saving of about 1.5
megabytes for a single simple documentation project.

http://www.microsoft.com
http://www.hypermedic.com/style

Styling and Style Sheets in General

39

Maintenance
It is great fun to design and build pages, but unfortunately in the real world they have to be maintained,
and maintaining pages with a lot of HTML styling can be a nightmare. The following list charts the
various parts of said nightmare.

� First the content of the pages can be difficult to read because of all the styling elements and tags.
� Secondly if we change the content, the balance of the page is often upset, and we have to alter our tags

and attributes and get things right by trial and error.
� Thirdly there is no easy way to alter the overall style of a set of pages without altering every tag

individually, usually by hand.
� In fact it is often easier to write a one-off program to handle the problem with code or script.

Style sheets have none of these disadvantages, and have the additional advantages set out below.

The single style sheet we developed above can be applied to as many documents as you want with a
single line of code in the HTML document—<LINK REL="stylesheet" TYPE="text/css"
HREF="ch1_2.css">.

� If you wish to change any of the styling in a family of documents, you just have to alter one
document, the style sheet, not thousands of HTML sources.

� The size of your HTML document is almost half of the document written up in tagged HTML.
� It makes it possible to separate authoring, and styling. Your copywriters can concentrate on the copy,

and your artists/typographers can concentrate on the styling.
� You will save both time and money.
� If you really want extra kudos, suggest to your boss what styling all your pages in XML/XSL will do

for productivity, profitability, and his stock options. But I am afraid you will have to read further
before you can pitch this line to him/her.

Why did Styling get so Complicated in HTML?
To answer this question we have to go back to the origins and original purposes of HTML.

HTML was originally designed for the transfer of referenced (with links) scientific documents across
numerous different platforms and the Internet. It is difficult to realize now that in the very recent past
Windows was not so dominant a platform.

The original HTML was very good at what it was designed to do, namely transfer document content.
However, somewhere along the line it crossed a divide from being a mere content provider for scientists
to being a means of communication for the average consumer. Most are agreed this process started with
the first Mosaic browser which allowed transfer of images, and accelerated with the release of Netscape
1.1.

The "Old Guard" fought an unsuccessful rearguard action to maintain the so-called "purity" of the Web,
but as soon as commercial forces became involved, they were doomed to failure. They were done in by
self-proclaimed "web-terrorists" such as David Siegel who were intent on making the Web a stylish and
consumer oriented place. The web-terrorists were provided with tools by

Professional Style Sheets

40

"gun-runners" such as Marc Andreessen intent on making the Netscape browser the dominant browser.
His chief tool to accomplish this was to create proprietary tags to make the Web a more stylish and
attractive place.

Once Microsoft realized that they had almost missed the boat, they threw their massive resources into the
struggle, again using proprietary styling and Multimedia tags as their chief weapon. The purist's battle to
keep the Web content driven was doomed—and styling tag followed styling tag. Individuals such as
David Siegel invented new tricks like the single pixel gif, new uses were found for tables, layout and
styling improved, but all at the expense of document clarity.

While David Siegel took to boasting "the Web is ruined and I ruined it", the W3 consortium lagged
behind the browsers to such an extent that the HTML 3 proposals were never finished, becoming out of
date before they ever became a recommendation! And so the web and HTML became a disordered
mishmash of styling tags and guru hacks. The next chapter shows how this dilemma was resolved using
Cascading Style Sheets.

Summary
In this chapter we looked at various forms of web page styling.

� We saw how styling markup differs from semantic and structural mark up, and how using mark up to
style is different from using a style sheet.

� We looked briefly at some of the more common styling tags and tricks used in HTML, and then used
them to style a relatively simple document.

� We looked at some of the problems that style sheets should be asked to solve, and looked at how CSS
in particular offers a solution.

� We enumerated the advantages of using style sheets over styling markup.

In the next chapter we will jump right into basic CSS style sheets, and then in the rest of the first part of
this book we will have a look at basic XML and how CSS can be used with it. We will also take a first
look at XSL, a style language that is very much in the formative stages, but will probably be used to add
powerful styling capabilities to XML.

Exercises
1. Take any 'commercial' page on the Web, and remove all the images and formatting tags.

See what you are left with.

2. Try and make the page interesting again, just using text.

3. Take a series of pages on a site, and time the average download time on your site.

4. Now time the average amount of time you spend reading the pages. (Research suggests
that we spend 70% of our time waiting for pages to download, 30% of our time reading.)

Styling and Style Sheets in General

41

	Table of Contents
	An Introduction to Styling and Style Sheets
	Who Should Read this Book?
	How Should you Read this Book
	What You Need to Use this Book
	What are Style Sheets?
	Some Basic Terminology
	Some Basic Definitions

	Style Sheets and Computers
	Clients and Servers

	The World Wide Web Consortium
	Microsoft, Netscape, and the W3C
	CSS1, CSS2, XML and XSL Specifications
	Conventions
	Tell Us What You Think

	Summary
	References
	Exercises

	Part 1
	Styling and Style Sheets in General
	Styling in HTML
	Styling Tags
	Styling Attributes
	Positioning
	Switches and Style Blocks
	An Example of Styling with HTML

	Styling with Style Sheets
	An Example of Styling with Style Sheets

	HTML Styling versus Style Sheet Styling
	Time is Money
	Download Speeds
	Maintenance
	Why did Styling get so Complicated in HTML?

	Summary
	Exercises

	Basic Cascading Style Sheets
	What is a Style Sheet?
	A Simple Style Sheet Example

	Anatomy of a Cascading Style Sheet Rule
	Forms of Cascading Style Sheet Rules
	Location of Style Rules

	Inheritance
	Inheritance in Action

	Selector Classes
	Boxes
	Properties
	Summary
	References
	Exercises

	Basic XML
	A Brief History of Markup Languages
	What is a Markup Language?

	The Importance of Markup Languages
	SGML
	SGML and HTML
	SGML and XML
	XML and HTML

	What is XML?
	Who needs XML?
	Is XML difficult?

	Writing an XML Document
	The Well-formed Document in XML
	The Valid Document in XML
	The Prolog
	The XML DTD
	Writing a Document Type Definition
	Summary of DTD

	Summary
	References
	Exercises

	More XML
	Creating an XML Document using Entities
	Logical Structure
	Physical structure
	An Example of Expanding Entities

	Outputting XML
	Outputting HTML
	The XML Browser
	Non-Browser XML Output
	Style Sheets in XML
	An Example of Applying CSS to XML

	Other XML Topics
	Searching and Modifying XML Files
	Linking with XML
	Simple Links
	Extended Links
	Group, Locator and Document Links
	XPointers
	XML Hot Topics

	Summary
	References
	Exercises

	Basic XSL Style Sheets
	CSS v. XSL v. DSSSL
	XSL Tools
	Sparse by Jeremie Miller
	The Microsoft XSL Processor

	How XSL works with Flow Objects
	XSL Construction Rules
	Practical XSL Examples
	Patterns
	Actions
	Summary of XSL Elements
	Referencing XSL Style Sheets

	Summary
	References
	Exercises

	Part 2
	What Works in which Browser?

	Font and Text Properties
	Fonts and Font Properties
	Font Definitions
	CSS Font Properties
	Font Variations

	Text Formatting and Formatting Properties
	Typesetting Terms
	CSS Text Properties

	Font Descriptions
	Bitstream Technology
	Open Type and Web Embedding Font Technology
	Panose Numbers

	Summary
	Exercises
	References

	Flow Objects, Selectors, Inheritance and the Cascade
	What is a Flow Object?
	How Browsers Work
	Legacy Browsers
	Modern CSS Compliant Browsers

	The Document Object Model
	Definition of the Document Object Model

	Selectors
	CSS1, CSS2 and the Browsers
	CSS Rules
	Selector Syntax
	Table of Selectors

	Inheritance
	The Cascade and Rule Precedence
	Setting up the Cascade
	Arbitrating between Values

	Generated Content
	The :before and :after Pseudo- Elements
	The Content Property
	1.2 1.3
	2.2 2.3

	Summary
	References
	Exercises

	Boxes and Layers
	The Basic Box
	The Box Types
	Block Boxes
	Inline Boxes
	Anonymous Boxes

	Box Properties
	Margin Properties
	The Padding Properties
	Border Properties

	Positioning Boxes
	Normal Inline Flow
	Normal Block Flow
	Layers and the Z-index Property

	Displaying or Hiding a Box
	The Display Property
	The Visibility Property

	Clipping the Contents of a Box
	The Overflow Property
	The Clip Property

	Summary
	References
	Exercises

	Backgrounds, Colors, Units, and Links
	Backgrounds
	Colors
	Colors in HTML
	Colors in CSS

	Color Properties
	The Color Property
	The Background- color Property

	CSS Units
	Integers and Real Numbers
	Lengths
	Percentages
	Literals
	URIs
	Counters
	Colors
	Angles
	Times
	Frequencies
	Strings and Escapes

	Linking Documents to Style Sheets
	Linking HTML Documents to Style Sheets
	Linking XML Documents to Style Sheets.

	The @charset Rule
	Interacting with the User Interface
	Colors and Background Colors
	Cursor

	Summary
	Exercises

	Lists and Tables
	Lists in HTML, CSS and XML
	Lists in HTML
	Lists in CSS
	CSS List Properties
	Lists in XML

	Tables in HTML, CSS and XML
	Tables in HTML
	Tables in CSS
	Tables in XML
	CSS2 Table Properties
	Aural Rendering

	Summary
	References
	Exercises

	Part 3
	XSL: Beyond the Basics
	The MSXSL Processor
	Formatting and Filtering
	Example of Filtering and Formatting

	Using Style Rules
	Defining Styles
	Inline Styling
	Class and ID
	Modes
	Macros
	Built-in XML Functions
	The tagName Function
	The <eval> Tag
	The getAttribute Function
	The item() Function

	Built-in XSL Functions
	The childNumber and formatNumber Functions

	Script and XSL
	The define-script Tag

	Dynamic Scripting
	Inline JavaScript

	XSL Output other than HTML
	Flow Objects from DSSSL and HTML supported in XSL
	Possible Changes to the Spec
	Summary
	References
	Exercises

	Scripting with Style (or Styling with Script)
	Differentiating between Browsers
	Writing Differential Style Sheets
	Comment on the Code

	Referring to an External JavaScript File
	Calling Differential Pages

	Active or Dynamic Styling
	Document Object Model
	Referring to Document Objects
	Getting Element Content
	Event Model

	Dynamic Styling in IE4
	CSS Properties and JavaScript
	Movement
	Drag and Drop

	Dynamic Styling in Communicator 4
	The Document Object Model in Netscape
	JavaScript Style Sheets
	The Netscape Layer Tag

	Other Useful Styling Tricks with Script
	Repetitive Text
	Creating Macros

	Summary
	References
	Exercises

	Other Style Languages: SPICE, XS, DSSSL flow objects
	Spice
	Spice in Concept
	Spice Flow Objects
	Modes and Out of Sequence Rendering
	Media Dependant Style Sheets
	Graphics
	Spice Style Sheets
	Summary of Spice

	DSSSL-O and XS
	DSSSL Rules
	DSSSL Definitions
	Introducing Text

	Warning:!
	Selectors
	Programming
	Summary of DSSSL-O and XS

	Summary
	References
	Exercises

	Other Canvases
	Styling for Different Types of Content
	Visual Content
	Aural Content
	Tactile Content

	CSS2 Media Dependant Style Sheets
	The @media Rule

	Summary
	References

	CSS Examples
	Notes on Writing Pages with CSS
	Example 1 A Simple Technical Discussion
	Example 2 A News Item
	Example 3 Choosing Subjects
	Example 4 A Banner Ad
	Example 5 A Borrowing from Print
	Example 6 Using Text as a Shape I
	Example 7 Using Text as a Shape II
	Example 8 Text as Art I
	Example 9 Text as Art II
	Example 10 Text as Art III.
	Technical Points
	Example 11 Text as Art IV

	Summary
	References

	Epilogue
	Standards
	CSS1
	CSS2
	XML
	XSL
	Mozilla

	Languages and notations
	Extended Backus-Naur Form (EBNF) notation
	The XML spec.
	The CSS1 spec.
	Reading the Official Specification

	CSS 1 Properties
	Font Properties
	Color and Background Properties
	Text Properties
	Box Properties
	Classification properties

	CSS2 Properties
	Box Model
	Visual Rendering Model
	Visual Rendering Model Details
	Visual Effects
	Generated Content and Automatic Numbering
	Paged Media
	Colors and Backgrounds
	Font Properties
	Text Properties
	Lists
	Tables
	User Interface
	Aural Style Sheets

	Units and values in CSS.
	String Values
	Keyword Values
	URI
	Integers
	Lengths
	Units
	Absolute Units
	Percentages
	Colors

	Colors in CSS
	Named Colors
	Numeric colors
	Hexadecimal Long Method
	Hexadecimal Short Method
	Decimal Integer Method
	Percentage Method

	Demo using JavaScript and the IE4 DOM to Show Styled XML in a Browser
	The Demo
	js1.htm
	Parsing the XML File using js2.js

	JavaScript tutorial
	Embedding JavaScript
	SCRIPT content
	Outputting JavaScript
	Writing HTML Code using JavaScript
	Values and Variables
	String Operators
	Numeric operators
	Controlling Program Flow
	Loops
	Input/Output
	Arrays
	Functions
	Passing Arguments and Returning a Result
	Objects
	Built-in Methods, Functions and Objects
	String Objects and Methods
	JavaScript Events
	Summary

	DSSSL Flow Objects
	Support and Errata
	Wrox Developer's Membership
	Finding an Errata on the Web Site.
	Adding an Errata to the Sheet Yourself.
	E-mail Support
	Customer Support
	Editorial
	The Authors
	What we can't answer
	How to tell us exactly what you think.

	Index

