

Summary of Contents

Introduction
Part 1: The Language 1
Chapter 1: A (Very) Short Introduction to Programming 17
Chapter 2: Variables and Data Types 45
Chapter 3: Control of Flow 91
Chapter 4: Error Handling, Prevention and Debugging 111
Part 2: In Context
Chapter 5: Using COM Components and Objects 157
Chapter 6: Using COM Components with MTS 179
Chapter 7: The Built-In and Scripting Runtime Objects 199
Chapter 8: Classes in VBScript Writing Your Own COM
 Objects) 227
Chapter 9: Windows Script Components 253
Chapter 10: The Windows Script Host 283
Chapter 11: General Client-Side Web Scripting 325
Chapter 12: High-Powered Client Scripting 345
Chapter 13: HTML Applications (HTAs) 381
Chapter 14: Server-Side Web Scripting with ASP 403
Chapter 15: Talking to Databases: ActiveX Data Objects 439
Chapter 16: Microsoft Script Control 459
Part 3: The Reference
Appendix A: Visual Basic Functions and Keywords 499
Appendix B: Differences between VB/VBA and VBScript5 579
Appendix C: Code Conventions 583
Appendix D: Visual Basic Constants Supported in VBScript 587
Appendix E: VBScript Error Codes and the Err Object 595
Appendix F: The Scripting Runtime Library Objects
 Reference 613
Appendix G: Windows Script Host 2.0 625
Appendix H: The Browser Object Model – IE4 641
Appendix I: The Browser Object Model – IE5 673
Appendix J: The Integral ASP Objects 693
Appendix K: ADO Object Summary, Constants, and Data
 Types 707
Appendix L: The Microsoft Script Encoder 785

Error Handling, Prevention and
Debugging

Overview
Error handling, unlike some other features, has been one of the selling points of
VBScript. In fact, until Version 5.0 of JScript had been released, VBScript held
tremendous edge over JScript because of its error handling capabilities (at least on the
server side of scripting). By now, you would expect volumes of literature on error
handling to exist, but this couldn't be further from the truth. As the scripting hosts grow
in their complexity, so do the general capabilities of scripted applications, and the end
user's expectations. At the same time, however, the schedules get tighter and the
workloads get bigger, making even ordinary bugs more difficult to catch. It seems that
proper testing and error handling ends up on the back burner, and unjustifiably so,
because simple error handling is not that difficult, as this chapter will show.

In this chapter, we will cover:

❑ How minute differences in hosts can affect runtime errors

❑ Different types of errors, and error display

❑ Basic handling of errors

❑ Strategies for handling errors in different situations

❑ Defensive coding strategies

❑ Debugging with Script Debugger and Visual InterDev

❑ Common errors and how to avoid them

4

Chapter 4

112

Introduction
No matter how simple a VBScript project you are developing, there is always a need for
effective error handling and debugging. If a project worked just fine the last time you
tested it, it can be hard to see how error handling and debugging are at all relevant. In
reality, script execution will depend on a variety of factors, starting with the user, and
ending with the physical environment in which the project runs. To understand what
the problems are, let's first consider the user.

Users rarely do what we expect them to do.

While many problems can be avoided by giving the user precise instructions and a clear
interface in the first place, often the user does not take time to read the instructions, or
does not understand them. So you understanding the way your project works might
make it more difficult for you to anticipate the sort of mistakes a user might make.
Thorough testing is therefore essential, especially when considering issues such as what
happens if the user enters text when you are expecting numerical input? Does the script
validate the data? Does the browser generate an error if the user clicks in the web page
before a sub-procedure is completed? Even if all the user entered data is valid, there still
exist possibilities that the user entered data may not work with other parts of the script –
for instance, the data may represent a duplicate record, which will not be accepted by
the database. Will the server script generate the error?

Next, the dynamically generated scripts which often depend on each other, are another
common source of errors. What if one of the procedures does not perform exactly as in
the test case or if the list box, containing an array of choices, is not present, or empty?
Similarly, scripts depending on some components may not be able to access them.
Perhaps the user has different security preferences than you anticipated, or does not have
an appropriate component loaded on the system, or appropriate permissions to run it.
What does your program do? Will your script attempt to log the error, or ask the user to
file a report?

Finally, hardware issues may be responsible for serious deviations in script executions.
The servers can be down, the client computer may be low on memory, or the disk that
the script is trying to access may simply crash. Will an operator be alerted about a major
malfunction?

In order to handle the error, you must anticipate it before it happens. Although
defensive programming goes hand in hand with error handling, you'll have to figure
out the trade offs, and choose the best technique for the situation.

Is there a part of the script that doesn't work exactly the way you expected it to and,
while the user will quite probably discover it, you might not have noticed? These are all
good reasons for emphasizing the following:

Error Handling, Prevention and Debugging

113

Thorough testing, debugging and error handling are vital for a project of any
size.

Undeniably, it is a chore to plan for errors before they happen, but in the long term, it is
well worth the effort and is a valuable habit to get into. Note that there is more to error
handling than the glorified On Error statement (dealt with later in this chapter). Before
you rush out to use it, you should realize that it is as often used to handle errors as it is
to cover up bugs and sloppy coding. Error handling is therefore also about good
programming practices and testing methods, as well as using the On Error statement to
handle the true exceptions.

Errors are not the evil we are led to believe and they can happen for bad or good
reasons. As long as they are caught and handled properly (sometimes, you will not be
able to correct an error), your programs will run smoothly. Understanding the
differences in the types of errors, the situations in which they occur, and the simple
error-handling techniques available, is paramount to graceful error handling. The
environment that your script feeds from, the complexity and your own understanding
of the language and the language's facilities, all combine to produce a vast source of
possible errors.

Note that error handling associated with the Script Control (Chapter 16) is
slightly different than with other hosts. Although error handling within the
Script Control works similarly to other scripting hosts, there is also the
possibility of handling errors via the host (e.g. the VB application itself), with
a distinction between compilation and run-time errors. For more specific
information, consult the above chapter on Script Control.

Error handling and debugging can also give a much more professional finish to a
project, as well as a sense of security that it will be able to stand up to at least some of
what the users are going to throw at it. However, it is not only the user that can make
mistakes: the errors can lurk in the script itself. Let's look at some other types of errors
that can afflict your code.

Seeing the Error of your Ways
Error messages that are displayed by the host identify the line number and the nature of
the error (see the figure below). Depending on the host, and on the nature of the error,
the error code may be displayed as a decimal number (such as 1024) , a hexadecimal one
(such as 800a0400), or simply as the text message identifying the error. If the error code
is hexadecimal, and begins with 800A, it is thrown by the scripting engine, and the
remaining four digits can be converted to its decimal representation. (They are covered
in Appendix E, and are additionally listed in VBScript's help files, but without the
hexadecimal representations.) Errors thrown by COM components and Windows are
usually shown using hexadecimal codes.

Chapter 4

114

Now, to make things more complex for the beginner, sometimes these error messages
will not show up, or will show up in a disguised format. These problems can be caused
by the configuration of the host and, at least in the debugging stage of the project, the
host ought to be configured to handle errors in the way you want it to behave. Only two
of the hosts can change the way in which errors are displayed: the ASP engine (the IIS
server) and IE5.

Enabling Error Display in IIS
Error handling in IIS is done on a Web application level (note: this does not apply to
PWS). Generally, each Web application will have an application initialization file – the
global.asa file – in its directory (see Chapter 14 for a description of this file and of
ASP in general). If you are working with a newly installed server, there is no need to
override any of the settings. If you are inheriting a server, or just an IIS application, and
errors messages are not being displayed, you should edit the application's properties
through the IIS' MMC (Microsoft Management Console) as shown in the figure below.
In Windows 2000 it is called Internet Information Services. Other errors (especially
HTTP) can also be configured using the Custom Errors tab (for more information you
should consult an IIS reference available with installation of the Option Pack, or with
Windows 2000).

Error Handling, Prevention and Debugging

115

Unfortunately, the error settings are hidden within the many options of the directory or
file, or of the application, and to change the error options you have to locate the
appropriate application, and then hit the Configuration… button to set the options
available on the figure below. Obviously, in order to see the messages, the Send detailed
ASP error messages to client option should be selected. Once your application is
debugged and in production mode, the other option is preferred as occasionally an error
may expose critical information about your system to the end user (e.g. critical variables,
or a database name of the application), especially in a situation when custom error
handlers are not available. Debugging flags, as seen on the screenshot, do not need to be
modified as they are usually handled by Visual InterDev. If you are using the free
debugger (downloadable from the Microsoft Scripting site), you must set the flags by
yourself, and start the debugger before calling any of the ASP pages.

Chapter 4

116

Enabling Error Display in IE 5.0
Although Internet Explorer 5.0 has an improved error display over previous versions, it
has introduced several options that may cause some confusion. Essentially, there are
two modes – 'debug' and 'run' – in which Internet Explorer can operate, each of which
has certain quirks. The preferred mode of error display and debugging (at least, for
developers in development mode) is the 'debug' mode with the use of the Script
Debugger. However, when in 'production' and 'testing' modes, debugging should be
disabled (see the note below). The standard (and free) script debugger may be
downloaded from the Microsoft Scripting site:

http://msdn.microsoft.com/scripting/debugger/default.htm.

An alternative to the script debugger is the Visual InterDev application environment
(which includes the script debugger), as well as the Microsoft Office 2000 element, the
Microsoft Script Editor. Script debugger is also installed with Windows 2000. After the
script debugger has been installed on the system, IE can display two different types of
error messages, and allow the option of entering the debugger once the error has been
found.

With IE 4, similar steps can be taken to disable and enable debugging. There is
no option to hide error display as in IE 5.

Internet Explorer error settings are neatly kept away from the end users and sometimes
can be frustrating to locate. From the Tools menu you have to choose Internet Options…
and then the Advanced tab to see the advanced IE settings as seen in the figure:

There are two options of interest to us: Disable script debugging and Display a
notification about every script error.

Error Handling, Prevention and Debugging

117

With the first option selected, the debugger is disabled, and depending on the selection
of the second option, either the so-called 'user friendly' error dialog box is set for the
browser, or the error icon in the lower-left corner of the Internet Explorer. Although the
dialog box shown below may be more user friendly, it may not be programmer friendly.
The error code is not displayed (only the text of the error code – which forces you to dig
through error code tables in case you would want to handle the error in code), but the
line number is displayed correctly. The dialog box displayed below is for the same
snippet of code as the dialog window shown in the following figure, but the line
number in there is wrong (although after going into the debug mode the correct error is
highlighted).

The disable script debugging option works only when the script debugger is installed on
the system; and additionally the browser has to be restarted before changes to this
option can take effect. Since this chapter will strictly work in developer mode, all of the
IE errors will be presented in the 'debug' mode, as displayed in the figure below – do
not check the Disable Script Debugging option:

The second option of interest – Display a notification about every script error – works
when the debug option is de-selected (Disable script debugging), and it enables
suppression of errors. When this option is cleared, an icon appears on the status bar to
inform the user that an error has occurred; the error is then displayed by clicking on the
icon. The yellow sign with an exclamation mark indicates that there was an error on the
page, as seen in the snapshot below.

Obviously, this is the least desirable setup from the developer's point of view. However,
it might be the default setup on your client's browser, which may prevent your client
from reporting any unhandled errors back to you. When the Display Notification About
Every Error option is checked, or the user clicks on the error icon (from the snapshot
above), the following dialog will appear.

Chapter 4

118

You should be aware of these subtle differences in error display, especially since this
setting is in your end users' control. Your error handling mechanism may be disabled
because of it, or the end user may not be able to see that an error has occurred, and be
surprised that the page does not work.

Note that when not 'debugging' scripts, the Disable Script Debugging option
should be selected at all times. When in debug mode, the scripting engine,
upon interception of an error, automatically invokes the debugger, and
prompts the user if the debugger should be opened. Although this is nice, the
standard client error handlers are ignored. Even if there is an error handler
capable of correcting the error it will not be invoked. It would be nice if the
debugger would start only as the last resort, but this is not the case. This
problem does not apply to ASP's Visual InterDev debugging options.

Other hosts are 'dumber', in a sense that errors are always displayed (with the exception
of WSH 2.0 – now in beta), and debugging is not possible. Different coding and
debugging strategies are discussed later in this chapter.

Different Types of Errors
There are three types of errors that can burrow their way into your lovingly crafted
VBScript (or any other scripting or programming language for that matter). The three
types are not equally severe, the syntax errors will halt the execution of the script, run-
time errors will invoke an error handler, and logical errors will most commonly
contaminate data in your application, and often cause other run-time errors to occur.

Syntax Errors
VBScript, like all other programming or scripting languages, follows set rules for
construction of statements. Before the script is run, the scripting engine parses all of the
code, converting it into tokens. When an unrecognizable structure or an expression is
encountered (for example, if you mistype a keyword or forget to close a loop), a syntax
error is generated. Luckily, syntax errors can usually be caught during development
phase, with minimal testing of the code.

Error Handling, Prevention and Debugging

119

In some programming environments, syntax errors are called pre-processor,
compilation, or compile-time errors. If your script includes a syntax error, the
script will not execute and the host immediately informs the user of an error.

Those of you who are used to writing applications using Visual Basic will be used to
having syntax errors highlighted by the interpreter in the IDE as soon as you move
from the line containing the syntax error. This is a very useful feature that
unfortunately is not available when using VBScript since the script is not interpreted
until it is executed. What happens depends on what you are doing. If the syntax error
is in a script being run at the server (as in an ASP-based application – see Chapter 14)
then the error text is simply passed through and displayed in the client browser
instead of the requested page, as shown in the figure below:

If the syntax error is in a client side script being run at the browser, the document loads
but the script that contains the error prevents it from running properly.

What exactly happens depends on where in
the script the error occurs. However, each
time the script is run, the error message will
be displayed. Here is the error message in
Internet Explorer 4.0:

Here is the same error as seen by Internet Explorer
5.0. Notice how the syntax error is confusingly
referred to as a run-time error:

Syntax, and run-time errors are easier to spot than logic errors (which we will look at
shortly) because they always result in an error message being generated. Needless to
say, with proper understanding of VBScript, syntax errors are not a major concern.

Chapter 4

120

Syntax errors tend to pop-up in several circumstances:

❑ When something is missing from the code – parentheses, keywords (especially
in blocks), statement elements, or when the keywords are simply out of place.

❑ When a keyword is misspelled or used incorrectly.

❑ When you try to use a VB or VBA keyword that is not implemented by
VBScript.

❑ When you use keywords that are not supported by the scripting engine
(certain keywords may be phased out, and others added).

 Unfortunately, VBScript does not support conditional compilation (the ability
to run different code depending on environment settings). Hence, when
writing code for different versions of browsers, or scripting engines, you may
either have to 'know-the-version', or use JScript.

As you may expect, code executed as part of Eval() or Execute and
ExecuteGlobalstatements is not parsed before the script is run, and can generate
runtime errors (but are exempt from the Option Explicit rules). Special attention
has to be paid when generating dynamic code. Appendix E shows all 53 of VBScript's
Syntax Errors and their codes. All of these errors, with an exception of the first two –
Out Of Memory and Syntax Error – are relatively easy to diagnose and correct, but all of
these errors (such as Expected '(' or Expected 'If') should really be caught when the
program is run the first time.

Runtime Errors
The second, and most common type of error (at least to the general public), is the
runtime error. A runtime error occurs when a command attempts to perform an action
that is invalid. For example, a runtime error occurs if you try to divide by zero:

Sub window_onload()
Ans = 200/0

Msgbox Ans

End Sub

The various conditions that can result in runtime error depend on the language you are
scripting with. A condition that might cause a runtime error in VBScript might not cause
an error in JScript (for example, attempting to divide by zero in JScript doesn't generate
an error). The result of a runtime error is similar to that of a syntax error – the script is
halted and an error message is displayed.

Error Handling, Prevention and Debugging

121

Unlike the syntax errors, which pop-up when the script is loaded, runtime errors show
up during script execution by the scripting engine. Runtime errors can occur as a result
of bad coding (which should really be caught during the debugging and testing stage of
the project), and as a result of unusual circumstances that may or may not be prevented.
There are many factors that can contribute to a runtime error, all depending on the
conditions under which the script is run.

The main reasons for these 'unusual circumstances' are:

❑ Certain security options may be turned on or off. For example, your script may
try to access a component that has not been marked as "safe for scripting". In
the tests you've carried out the Internet Explorer has been set to trust the
component; however, during final release, the script crashes because of
different security settings on client browsers.

❑ Components may or may not be available. Here, you might assume that a
component is readily available on the client system, and not provide
installation information when referencing the component. When the
component is not available, the script will cause a run-time error.

❑ Platform differences. VBScript may be available on many platforms (including
Unix, or Alpha) but the features supported by each platform may vary,
especially when using external components.

❑ Configuration may be totally different (you should not expect an HTA based
script to run 100% as an HTML based script).

❑ Finally, the computer might be under unusual stress. Scripts that use unusual
amount of system resources (memory or CPU time, for example) may behave
unexpectedly, especially when other scripts and applications contend for the
same resources. Applications can often time out, and raise an error directly to
the script, or, in other cases, terminate a script.

Technically, when the runtime error occurs, the script execution is stopped and the
VBScript engine invokes an exception handler (it is considerably weaker in its
functionality than the VB or VBA exception handler). There are several options at this
point, but we will defer them to a later section – What can we do about errors?. The most
essential error handler in question is the On Error Resume Next statement, which
unfortunately requires a little foreknowledge into the possibility of an error occurring at
the right time and at the right line of code (as you have to perform error testing
immediately after the error occurs) in order to be able to use it. Internet Explorer
additionally provides window.onerror and element.onerror events that can be
bound to functions, which is covered in Appendix E. If no error handler is present, the
error is reported back to the client.

Thus, runtime errors provide us with the possibility of taking some action. In order to
correct the error in VBScript, you will need to know the decimal version of the error
number (which is also provided as a hexadecimal code, for cases when VBScript throws
an error, and passes it to the host): a full listing of VBScript runtime errors is provided in
Appendix E. The majority of these errors (such as Division by zero or Variable is
undefined), however, are simply a result of poor programming, and really should be
caught during the debugging and testing stage of the project, rather than corrected by
some overly complex error handler.

Chapter 4

122

Non VBScript Runtime Errors
Usage of outside components and files (Automation Objects) can also be a cause of
runtime errors. Although some of the errors listed below will be thrown in reference to
improper usage of other components and files, you can also expect to see a lot of errors
that may either be raised by the component or the operation system. For instance, the
ADODB.Recordset component may raise the following error:

Microsoft OLE DB Provider for ODBC Drivers error '80004005'
[Microsoft][ODBC Driver Manager] Data source name not found and no default
driver specified

This is probably the most common COM failure error (which, in this case, actually has a
useful description). This particular error – 80004005 (called SCODE) – is raised by a
number of COM components, and sometimes contains useful information, as in the case
above. Most of the time, though, you will end up scratching your head, wondering what
the error message might mean. Good sources of information about errors are the
appropriate documentation and Microsoft's Personal Online Support Site at
http://support.microsoft.com/support/search/.

When trying to find out the meanings of error messages (after you realize it is not an
error based in your VBScript), you may use the following list as a rule of thumb to
identify a potential source of error:

8007xxxx Windows errors (you may convert the xxxx hex code to decimal
and use net helpmsg dddd in DOS window to find out the
meaning of the error)

800Axxxx ADO errors

80005xxx ADSI errors

Knowledge of error codes thrown by components and windows is essential in the
development of error handling functions, as the majority of error handling functions
often rely on outside components.

Additionally, some components, such as ADO, contain their own Errors
collection, which may expose more than a single error that occurred. In case of
ADO, the Errors collection contains information pertaining to a single
operation involving a given provider. You should research a given component
not only for the errors it might raise through automation, but also about its
internal error handling capabilities.

Problems with Option Explicit

If you come to VBScript with a good VB or VBA background, you are probably
accustomed to the usage of Option Explicit statement as the very first line
in your program. Kudos to you, but you should not expect the same behavior
in VBScript. Expect a lot more work on your behalf. From now on this is a
runtime error.

Error Handling, Prevention and Debugging

123

The Option Explicit statement is one of the many statements transplanted from VB
into VBScript. It is particularly useful in identifying undeclared and misspelled
variables, or variables that are being used beyond their scope. When a script contains
the Option Explicit statement before any other statements, the scripting engine
expects all variables to be declared explicitly by using any of the Dim, Private,
Public, or ReDim statements, and only to be used within their scope (except for
dynamically executed code associated with Eval, Execute and ExecuteGlobal).
Unfortunately, unlike in VB or VBA, using Option Explicit causes the runtime error
500 Undeclared Variable; as you can imagine, this severely limits its usefulness when
used in combination with the On Error Resume Next statement.

Let us demonstrate this with an example. The following code contains two undeclared
variables, one that has global scope, and one within the scope of the GetLucky()
function. The power of Option Explicit is easily identifiable:

<SCRIPT LANGUAGE=vbscript>

<!--

Option Explicit

Dim intMyNumber, intResult ' Declare variables

intLucky = 10 ' Undeclared variable generates syntax error

intMyNumber = 10 ' Declared variable does not generate error

intResult = GetLucky()

Function GetLucky()

 Dim intMyNumber ' Declare variable local in scope

 intLuck = 3 ' Undeclared variable: wanted to change

 ' intLucky - error

 intMyNumber = 4 + intLucky ' Now have 14 instead of 7 like we wanted

 GetLucky = intMyNumber

End Function

-->

</SCRIPT>

After the first run, we see that intLucky is not declared, and we proceed to fix the
error:

Dim intMyNumber, intResult, intLucky ' Declare variables

Now, as the screenshot below shows, we find another error (an undeclared or
misspelled variable), which is easy to correct. Clearly, we wanted to change the global
variable, intLucky, and the Option Explicit statement helps us to identify our
mistake. Without the Option Explicit statement at the start of the script, various
mistakes of this nature are likely to pass unnoticed, causing odd or unwanted results at
runtime.

Chapter 4

124

With the obvious usefulness of the Option Explicit statement, why should we be
unhappy with it? Well, because it is a runtime error, and consequently, undeclared
variables will not show up during parse stage, and its detection may even be negated by
the use of On Error statement (with either Error being overwritten, or cleared) –
something that is the opposite in the VB environment.

If the GetLucky() function had not been executed (some functions will not be called
each time the script is run, depending on user responses), the undefined variable error
would never have materialized. Secondly, it creates complications when you are
creating error-handling functions. Essentially, when handling exceptions, you are
expecting something more significant than an undeclared variable, in other words you
are expecting a true exception, and not just a simple programming mistake.

Rarely will you try to correct this mistake, and you will probably have to consider an
undeclared variable as a critical error, which should be caught early in the development
stage. Unfortunately, this will throw you off because of the manner in which it will be
introduced – the error may exist in a rarely accessed procedure, and the error reporting
procedure may not be prepared to identify this type of error. Although error handling is
discussed in more detail later in the chapter, consider a simple illustration of what
might go wrong. Let us add On Error Resume Next – a footstep of error handling
immediately after Option Explicit to the code above, as following:

Option Explicit

On Error Resume Next

Now, when running the script, Option Explicit is essentially neutralized, and the
error is not easily caught. If a generic error handler were available, it would inform us
that an error has occurred, but it would not tell us the line where the error occurred.

When writing an error handler, remember to provide reporting functionality for generic
errors, including undefined variables. A callout label in such a handler may prove
invaluable. Although you may not know the exact line number where the error
occurred, at least you will be aware of its proximity.

In any way, when combining Option Explicit with On Error Resume Next you
have to be extremely careful in the way you test for errors, create a scope for an
exception handler, override the default exception handler, and, finally, clear the
exception handler (via On Error Goto 0). More on Error Handling specifics is
available in the Appendix E.

Error Handling, Prevention and Debugging

125

Logic Errors
Logic errors, or bugs, are the most difficult of all the errors to catch and track down. By
their nature, these errors are caused when a valid script (no syntax, or runtime errors)
produces undesirable results. For example, a script that asks for the user's password
before letting them proceed, but which still allows them to proceed whether the
password is correct or not, would have a logic error. Likewise a script that totaled-up an
order form but which did not handle the tax right would be a logic error. A script might
be designed to convert measurements from one unit to another (Fahrenheit to Celsius,
for example) but if the formula is wrong, you have a logic error. In other words,
VBScript will always do what you tell it to do, not what you thought or meant to tell it
to do. The scripting engine will not generate an error message – your script will simply
produce unexpected output; however, logic errors' side effects often include creation of
other errors as well.

As always though, there are exceptions to the no-error-message rule for logic errors.
This is in relation to infinite loops. For example:

Sub window_onload()
 Dim intX

 Do Until(intX)

 If intX < 10 Then

 inX = intX - 1

 'the above line has a mistake in the variable name

 End If

 Loop

End Sub

If your script contains a script that takes a long time to process then the VBScript DLL
will eventually time out and display the following error message:

This allows you to stop the script before the system becomes unstable. However, it does
not provide you with any clues as to what or where the error is.

Identification of logic errors is beyond the scope of this chapter. The most common
types of errors will include bad calculation formulas, incorrect usage of operators,
improper rounding, and generally problems with conditional statements, loops, and
general lack of validation of data. The only way to reduce the occurrence of these is
through full testing of borderline outcomes. There are testing tools, such as Visual Test,
which will simplify repetitive testing processes (including regression testing), and the
debugger (available with IE, or Visual InterDev), which will help you step through the
code, look at the contents of variables, and the calling stack. In a proper test you will be
required to feed the script a lot of data (good, borderline, and bad) and compare the
output against the output you have calculated (or figured out) manually. Some tips on
testing are:

Chapter 4

126

❑ Check, double check, then recheck again any formulae you have used in your
script, to make sure that they return the correct results.

❑ Work out the results that you expect – try out all the different combinations.

❑ Consider how the user might impact a calculation by, for example, entering
zero or a negative number – does the script cope with this?

❑ Check that the knock-on effects of any actions are there – for example, if a
customer deletes an item from their order, be sure to check that the item is
removed AND the order total changed.

❑ Do not just check things to see if they work, also check what happens under
circumstances where you know they should not work.

Only careful testing can help you spot logic errors in your projects.

Unfortunately, there are no other good techniques for catching logic errors. VBScript
does not support anything like Debug.Assert which is found in its parent languages,
and even though you might create an object with similar functionality on your own, you
will also have to remove the additional code during the release stage on your own (this
is not the case with VB and VBA). There are some guidelines we can follow:

❑ Testing (as mentioned above) is essential to eliminate logic and runtime errors.

❑ Use encapsulation within VBScript classes to reduce the chances of logic errors
occurring.

❑ Whenever you can, re-use old code that has been thoroughly tested and that
you know from experience works (one may say that the only good code is old
code, which is crazy considering that the Internet reinvents itself every few
months).

❑ Always adhere to coding conventions – these increase the overall clarity of
your code.

❑ Adoption of good programming practices, particularly at design time,
dramatically reduces the complexity of your code.

The only marginally practical technique is to treat possible logic errors as runtime
errors, by raising an error. By testing and validating the critical values internally in the
key subroutines and functions (at least, checking the input parameters), you may be able
to find areas in which your code is producing an undesirable output. When you find
that data is not valid within a certain predefined range, you may raise an error, and
break execution within that procedure. This will, unfortunately, only cover a small
percentage of logic errors; we re-emphasize that only a stringent testing method can
identify all of the logic errors within your script.

Finally, logic errors are sometimes a by-product of a high degree of complexity. Proper
encapsulation, variable scoping, and use of VBScript classes will undoubtedly reduce
the likelihood of logic errors occurring. Following this to the extreme, the best approach
is to simply re-use old and trusted code, whether by use of includes (in HTML and ASP)
or through the use of various components (.wsc, .htc, .dll, .ocx).

Error Handling, Prevention and Debugging

127

What Can We Do About Errors?
There are two things we can do with an error:

❑ Get rid of it completely

❑ Handle it

Because it isn't possible to make a script completely bomb-proof (since errors can be
caused not only by mistakes in the script itself but also by actions taken by the user),
there is a real need to implement a method by which errors are dealt with more
effectively than simply flashing the error message dialog box at the user.

Remember that to most users the error messages will be incomprehensible.

We will look at how we get rid of errors later in this chapter, when we come to
debugging, but for now let us look at what is meant by handling errors and how we go
about doing it. Also take a look at Appendix E, which includes complete syntax, and
many examples of error handling.

Handling Errors
The process of error handling involves detecting the error as it occurs and dealing with
it effectively. How we choose to deal with errors depends on the type of error, what
caused it and the consequences resulting from it. The simplest thing we can do with an
error is ignore it and to do this we use the On Error Resume Next statement.

On Error Resume Next
The On Error statement enables error handling in the script that we are writing. The
only thing that we can do with the On Error statement in VBScript is to Resume
Next. What this means is that an error in the script in any procedure, instead of being
fatal and causing the script execution to stop, is overlooked and the execution continues
with the next statement following the error or with the statement following the most
recent call out of the procedure containing the On Error Resume Next statement. In
other words:

On Error Resume Next is the VBScript equivalent of telling the interpreter
to ignore any errors and carry on regardless!

The On Error Resume Next statement must come before any statements in the
procedure you want it to protect. So for instance the following snippet of script, where
we divide by zero, will not generate an error:

Sub window_onload()
On Error Resume Next

 x = 3/0

 Msgbox x

End Sub

Chapter 4

128

It will simply resume execution of the script, in this case, by
displaying a message box with a meaningless result:

However, if we place the statement after the error, we lose all the protection that it offers
us:

Sub window_onload()
 x = 3/0

 Msgbox x

On Error Resume Next

End Sub

This time the error is handled by the host, and the
message is generated as normal:

This statement might seem to be all we need to know for effective error handling – it
isn't. This is because it is really the error-handling equivalent of brushing dirt
underneath the carpet - sure, you don't see it, but the result isn't really ideal. Using it can
lead to some odd results, as the divide by zero example above shows. There are few
scripts that can be expected to function properly after one line has been ignored because
of an error: usually, this will cause another error further down the line.

Remember that when using the On Error Resume Next statement that the error has
still occurred. All it has done is hidden the standard error message response. While it is
useful at times to include the On Error Resume Next statement in code, a much
better way of dealing with errors is to actually handle them. To do that we use the Err
object.

Err Object
The Err object holds information about the last error that occurred. It is a feature that is
available for use at all levels of your script and there is no need to create an instance of it
in your code as it is an intrinsic object with global scope (see Appendix E for a more
detailed description). This object has five properties and two methods.

Error Handling, Prevention and Debugging

129

Err Object Properties

Property Comment

Description Sets or returns a descriptive string associated with
an error.

HelpContext Sets or returns a context ID for a topic in a help file.

HelpFile Sets or returns a fully qualified path to a help file.

Number Sets or returns a numeric value specifying an error
– this is the Err object's default property. It can be
used by automation objects (ActiveX) to return a
SCODE (status code).

Source Sets or returns the name of the object or application
that originally generated the error.

Err Object Methods

Method Comment

Clear Clears all property settings of the Err object.

Raise Used to generate a runtime error.

Using the Err Object
Let's look at how we can use the Description, Number and Source properties, and
the Clear and Raise methods of the Err object. The other properties refer to custom
help files that can be created for specific errors that the user might come across.

The first thing to remember about using Err to handle errors is that you need to have
On Error Resume Next set before hand; otherwise, the script execution will be cut
short and your error handling script will be wasted!

…

On Error Resume Next

…

Now we can set to work handling the error our way. The first thing to do is to generate
an error, and to do this we could simply write a script with a deliberate error in it.
However, we have no need as VBScript provides a way to generate errors on demand –
the Raise method. Using this method we can generate any error we want, with just one
line. All we need to know is the number of the error (given in Appendix E) that we wish
to create.

Chapter 4

130

So, if we want to generate an overflow error, for example, we raise error number 6:

On Error Resume Next

Err.Raise 6

Or, for a custom error, we can use vbObjectError constant. The programmer can
define error numbers above this constant to create and handle errors specific to the
script.

On Error Resume Next

Err.Raise vbObjectError + 1, "something is wrong", "Custom Error"

If you want to see the error messages generated by these, simply comment out the On
Error Resume Next statement, or create a procedure to display the error.

Now we have our error, let's look at how we can handle it. The property to use is the
Description property. This is used to set or return a textual description of the error. If
we use the default description, we simply get the standard error message. For example,
here is our error-handled divide by zero:

On Error Resume Next

Err.Raise 11

MsgBox (Err.Description)

Here is how it would be unhandled:

Not much of an improvement, is it? However, we can create a message that is a little
more meaningful:

On Error Resume Next

Err.Raise 11

Err.Description = "You have attempted to divide by zero " _
 & "- please try another number"

MsgBox (Err.Description)

Error Handling, Prevention and Debugging

131

This example is preferable because it gives the user a clear and unambiguous
explanation of what has happened and what they need to do next.

We can do the same thing with the error number, this time using the Number property:

On Error Resume Next

Err.Raise 11

Err.Description = "You have attempted to divide by zero " _
 & "- please try another number"

MsgBox (Err.Number & " " & Err.Description)

This property also allows us to set or return our own number to an error (setting your
own number might be useful if you want to include an easy to use guide with your
VBScript project). This is not the best way in which user-defined errors can be created, it
is more advisable to use the vbObjectError constant, this is explained in Appendix E:

On Error Resume Next

Err.Raise 11

Err.Number = 1

Err.Description = "You have attempted to divide by zero " _
 & "- please try another number"

MsgBox (Err.Number & " " & Err.Description)

If we want to know what generated the error we can use the Source property:

On Error Resume Next

Err.Raise 11

Err.Number = 1

Err.Description = "You have attempted to divide by zero " _
 & "- please try another number"

MsgBox (Err.Number & " " & Err.Description & " - " & Err.Source)

Chapter 4

132

Using Source is helpful in tracking down errors when using VBScript to automate
Microsoft Office tasks. For example, if using script to access Microsoft Excel, and it
generates a division-by-zero error, Microsoft Excel sets Err.Number to its own error
code for that error, and sets Source to Excel.Application. Note that if the error is
generated in another object called by Microsoft Excel, Excel intercepts that error and re-
sets Err.Number to its own code for division by zero. It does, however, leave the other
Err object properties (including Source) as set by the object that generated the error.

Once the error is handled, we want to get rid of it completely. To do this, we use the
Clear method:

On Error Resume Next

Err.Raise 11

Err.Number = 1

Err.Description = "That one happens all the time!" & _

 "You have attempted to divide by zero - please try another number"

MsgBox (Err.Number & " " & Err.Description & " - " & Err.Source)

Err.Clear

Clear is used explicitly to clear the Err object after an error has been handled. VBScript
calls the Clear method automatically whenever any of the following statements are
executed:

❑ On Error Resume Next

❑ On Error Goto 0

❑ Exit Sub

❑ Exit Function

Remember to remove any lines in your script that raise errors when you have
finished testing your error-handling code!

Remember that errors are like aches and pains - they point to something being wrong,
either with the script itself or with the way it is being used. There is a tendency to think
that, given all the power that VBScript has to offer, we should try to fix these problems
'on the fly'. So if someone divides by zero, it's easy to think that you could simply use
VBScript to put another number into the sum. The danger here is that you create more
problems in trying to 'fix' it, and this can lull the user into the false sense of security that
everything is OK when it isn't. Only attempt this kind of error handling when you can
be absolutely sure you know what the problem is.

Error Handling, Prevention and Debugging

133

A good alternative to using message boxes is to create custom help files and refer to
these using the Err object properties HelpContext and HelpFile. These allow us to
point to specific entries in a custom help file created for the project in question - giving
the whole project a professional and polished feel.

For a project of any size, it is useful to log any errors that occur so that they can be
studied later. This is particularly useful for large ASP-based projects, where the error
might lurk otherwise undetected – although aggravated users can often points these
out to you!

Handling Errors
So far we have identified the syntax and the simple techniques associated with error
handling. Obviously, we cannot ever hope that errors "will just not happen", and even
if it were possible to eliminate all of the errors from the code (through very defensive
programming), the cost of developing such software would probably be quite
prohibitive.

Thou shall not underestimate the importance of error handling. Something
will go wrong—will your program handle it gracefully when it does? A
program can never be considered professionally done without a well thought-
out and consistent error-handling scheme.

By now, based on the examples shown previously, we know that we can handle errors
in three different ways:

❑ Ignore the errors altogether (the script stops), and allow the default error
handler provided by the host to deal with the error.

❑ Try to intercept errors in-line, immediately after a suspect operation that could
create an error.

❑ Push the error up the call stack, and create either generic error handlers, or
procedure specific handlers that can anticipate the problems arising from the
procedure.

If you are not familiar with the term “call stack”, imagine that as each function or sub is
called, it is placed on top of a stack. When a procedure calls another procedure (or even
itself), the second procedure is placed on top of the stack. If the second procedure does
not have an error handler and an error occurs (or Err.Raise is used), the error is
pushed “up the call stack”. The remaining piece of the second procedure is ignored, and
the first procedure has a chance to handle the error. Since procedures are often nested,
you can easily control errors by placing error handling routines in key procedures. You
have to be aware that certain statements will reset the Err object, and your error
handling has to come before that. Please see Appendix E for examples of using the
calling stack to handle errors.

Chapter 4

134

Note that it is also a good idea to have a bottom-line, generic error handler
available at all times. More often then not, the error handler will be written
with a specific purpose in mind – checking whether a file exists, or whether an
SQL string executed correctly. In such circumstances, there can be other errors
that we have not accounted for – undeclared variables, bad parameters, etc.
These should be either passed on up the call stack, by raising a custom error,
or passed on to another, more generic procedure.

So, what can be done, after an error is intercepted? Perhaps the sky is the limit, and only
creativity and limited time budget will prevent you from treating the error the way you
want it treated – in other words fixed. There are no out-of-the box solutions here, only
loose guidelines. The simplest thing to do is obviously to display the error in the most
meaningful way. As you go on, you should try to log the problem (if script is running
unattended), or at least provide a simple facility for the end user to report the problem.
Going further, you may try to fix the problem on the fly – perhaps it is just a simple
exception (such as an out-of-bound array call), or a user error that can be retried. Then,
if you can't fix it, gracefully fall back on the user-friendly error message, and log the
error. More often than not, errors that cannot be easily handled will expose the
weakness of your program, rather than a configuration problem that prevents the
program from executing. Make the first few users your test subjects if you cannot test all
of the exceptional permutations personally.

When writing an error handler, make sure it is bug proof. Test it more than any other
procedure, preferably with the use of home-built test suites in order to see how it
behaves with different data (either raise errors, or call it with simulated data), and in
under different circumstances. Errors that are not found in development (computer low
on memory, lack of appropriate permissions, etc) will unfortunately rear their ugly
heads in production. Cross-application interactions as well as an increased user load on
an IIS server may effectively disable some of the poorly written error handling
procedures. It is also a good idea (or even standard practice) to get someone else to test it
as thoroughly as possible as well.

Step #1: Diagnose What Went Wrong
Error diagnosis is obviously a large part of error handling and, unfortunately, there is
no easy way to jump into error handling without making sacrifices. There are just too
many error codes in VBScript alone for us to write code that will anticipate all of the
possible errors, never mind writing code for all of the possible errors caused by outside
components. The common technique is to debug early for the most common errors (bad
parameters, undeclared variables, etc.) and write your error handling function around
only those errors that you are anticipating.

For instance, working with ADSI (one of the common components automated by
VBScript), we can pull out the most prevalent ADSI errors and put them into a common
error handler, which may be invoked whenever an error is diagnosed. This may even
happen when your script is executing correctly. For instance, if we want to add a new
user to a domain, with a username that already exists, it will be less expensive in terms
of programming and computer resources to check for an error when adding a new user
rather than attempt to find out if the user exists.

Error Handling, Prevention and Debugging

135

The code below performs a select case against the Number property of the Err object,
allowing the programmer to decide what happens when a given error occurs. Due to the
number of possible errors, the listing is edited for brevity's sake; the snippet also adjusts
for the poor error descriptions of ADSI:

<%

Sub adsiErr()

 Dim blnIsErrorFixed

 blnIsErrorFixed = False

 Select case Err.Number

 case &H80005000: ' Invalid ADSI pathname

 blnIsErrorFixed = fixErrorPath()

 case &H80005001: ' Unknown Domain Object

 call logError("Unknown Domain Object")

 call displayError("Unknown Domain Object")

 Err.Clear

' Bunch of case statements deleted, see real file

 case &H80004005: ' now the ambiguous COM Error

 call logError()

 call displayError()

 Err.Clear

 case &H800708B0: ' Unable to add, User Exists

 blnIsErrorFixed = fixUserExistsError()

 case else: ' unaccounted error, log it,

 ' display it

 call logError()

 call displayError()

 Err.Clear

 End Select

 If Not blnIsErrorFixed Then Response.End

End Sub

%>

This semi-generic error-handling procedure is sufficient to cover the majority of errors
that can be attributed to ADSI. It can be called in-line, as well as after a procedure call –
the code below is slightly edited:

Option Explicit

Dim objComputer, objGroup, strGroupName

On Error Resume Next

' Get object for computer, call error handler inline

Set objComputer = GetObject("WinNT://" & Request.Form("DomainName"))

If Err Then adsiErr()

strGroupName = Request.Form("GroupName”)

' Create the New Group, call error handler afterwards

Call createNewGroup(objComputer, objGroup, "group", strGroupName)

If Err Then adsiErr()

Chapter 4

136

Regardless of whether or not the error handling routine is generic, the same principles
will always apply, except when we're only interested in displaying and logging the
error (where we would just use case else: from the previous code). The error
identification template will always be the same, but with a specific error the template
may be slightly smaller – and you may use a less generic function. For instance, because
– after the call to the createNewGroup() subroutine – we were only expecting an
Unable to Add, User Exists error (because we were already able to establish a
connection with the domain) we could have automatically called
fixUserExistsError() as it was the most likely error to occur.

Step #2: Attempt to Correct the Error
After you have identified the error, you should obviously attempt to fix it, if possible, if
not, you may just follow the next two steps. In some circumstances, the error will be a
result of a user action, or input. Since VBScript is commonly found in ASP type
applications, the most common errors lie in the database or file handling, as a direct
response to user interaction. We'll look at a detailed database and a COM object
example at the end of the section. Here, this code allows the user to correct the error. In
case of potential user errors, the best approach is to validate the data that will be used
by the other components.

The code below tests if a string entered into an HTML form is a date. If the string
entered is not a date, the procedure throws an error, and for practical purposes,
invalidates the form, and displays a simple error message:

<%@ Language=VBScript %>

<%

Option Explicit

Dim strDate, strError, datDate, blnError, blnCanContinue

blnError = False

blnCanContinue = False

strDate = ""

strError = ""

Sub HandleError() ' this will handle Error string

 strError = "" & Err.description & ""

 blnError = True

End Sub

Sub CheckDate ' Sub that checks the date

 strDate = Request.Form("strDate")

 If Not IsDate(strDate) Then Err.Raise vbObjectError + 1, , _
 "Not a Date
"

 datDate = CDate(strDate)

 blnCanContinue = True

End Sub

If Request.Form("strDate").Count = 1 Then ' form was entered

 On Error Resume Next

 CheckDate

 If (Err.Number > vbObjectError) Then HandleError

End If

%>

Error Handling, Prevention and Debugging

137

<HTML>

<HEAD>

<TITLE>Try Again</title>

</HEAD>

<BODY>

<% If blnCanContinue = False Then

 If blnError = True Then Response.Write strError

%>

<form action="tryagain.asp" method="POST">

Enter a date: <INPUT type="text" id=strDate name=strDate value="<% = strDate

%>">

</form>

<% Else %>

Date is OK: <% = strDate %>

<% End If %>

<P> </P>

</BODY>

</HTML>

Correction of run-time errors can be extremely difficult and is not really recommended –
perhaps it is some other part of the script creating the error, and attempts at correcting it
will cause more problems. As a rule of thumb, you should establish default values for
critical variables, and check the validity of the variables used by procedures. When the
variable is out of valid range, substitute it with the default value.

When attempting to correct the error you should think hard whether you can indeed fix
it. Chances are that if you can anticipate it, you should be able to fix it. Perhaps a
database server may be down, and you may be able to “switch” to a backup server,
maybe user entered backward slashes “\” in a URL textbox instead of forward slashes
“/”, or simply an array is too small, and you might have to ReDim it. Usually, it is the
unanticipated error that cannot be fixed with a backup plan.

Step #3: Come Up with a User-Friendly Error Message
A user-friendly error message goes a long way to show that you at least care a little bit.
There is nothing more annoying than the default error message provided by the host.
Not only is it more confusing to the user, but also offers no recourse of action. A user-
friendly error message can contain some of the following information:

❑ An apology

❑ A plea to report the error, along with some nifty report form (or log the error,
if possible)

❑ A more understandable explanation of the error

❑ Steps that the user can take to recover from the error

Obviously, the error message, as well as, any reporting utility will depend on the host
and the nature of the error. With IE, it is fairly easy to create a new window with a form
that would include an error reporting mechanism (shown in the code below). Other
errors will require similar techniques, and may even include auto reporting via a
logging mechanism.

Chapter 4

138

<script language=VBScript>

Function onErrorHandler(message,url,line)

 dim strHTML, objWindow

 strHTML = "<HTML><HEAD>" & vbCrLf

 strHTML = strHTML & "<TITLE>An error has occurred!</TITLE></HEAD><BODY>" _
 & vbCrLf

 strHTML = strHTML & "" _
 & "" & vbCrLf

 strHTML = strHTML & "We are sorry!" & vbCrLf

 strHTML = strHTML & "
Something went wrong " _
 & "while processing this page."

 strHTML = strHTML & "<P>To help the web administrator " _
 & "identify the problem," & vbCrLf

 strHTML = strHTML & "please provide a brief explanation of " _
 & "how the error occurred,"

 strHTML = strHTML & "and press the submit error button below. " _
 & "This will help us"

 strHTML = strHTML & "identify and fix the error." & vbCrLf

 strHTML = strHTML & "<FORM ACTION=""mailto:bugs@wrox.com"">" & vbCrLf

 strHTML = strHTML & "<Error Description:
<TEXTAREA NAME=desc ROWS=5"

 strHTML = strHTML & " COLS=30></TEXTAREA>" & vbCrLf

 strHTML = strHTML & "<INPUT TYPE=hidden name=error VALUE=""" _
 & message & """>" & vbCrLf

 strHTML = strHTML & "<INPUT TYPE=hidden name=file VALUE=""" _
 & url & """>" & vbCrLf

 strHTML = strHTML & "<INPUT TYPE=hidden name=line VALUE=""" _
 & line & """>" & vbCrLf

 strHTML = strHTML & "<P><INPUT TYPE=SUBMIT " _
 & "VALUE=""Submit Error Information"">" & vbCrLf

 strHTML = strHTML & "</FORM></BODY></HTML>"

 set objWindow = window.open("")

 objWindow.document.body.innerHTML= strHTML

 onErrorHandler = true

End Function

Set window.onerror = GetRef("onErrorHandler")

</script>

The code listing above is essentially suited to a fatal DHTML error, where script
continuation may prove impossible. Other hosts will use a little variation on the theme
above. A similar approach should be used in ASP, with an exception of automatic
logging of the error, a few changes in an error message, and changes in the last few
lines:

Response.Clear

Response.Write strHTML

Response.End

Other hosts may require a simple use of a MsgBox function, and logging of the error.
The baseline attempt at displaying the error should contain the vital information. The
following code function can be used to return information for errors that do not have a
custom display. It can be used with practically any host, as the returning string can
either be sent to the browser or another text handler.

Error Handling, Prevention and Debugging

139

Const cHTML = 1

Const cString = 2

Function UnknownError(intOutputConst)

 If Err = 0 Then UnknownError = ""

 Dim strOutput

 strOutput = ""

 If intOutputConstant = cHTML Then

 strOutput = strOutput & ""

 strOutput = strOutput & "An Error Has Occurred
"

 strOutput = strOutput & "Error Number= #" & Err.number & "
"

strOutput = strOutput & "Error Descr: " & Err.description & "
"

strOutput = strOutput & "Error Source: " & Err.source & "
"

strOutput = strOutput & "" & vbCrLf

 Else

strOutput = strOutput & "An Error Has Occurred" & vbCrLf & vbCrLf

strOutput = strOutput & "Error Number= #" & Err.number & vbCrLf

strOutput = strOutput & "Error Descr: " & Err.description & vbCrLf

strOutput = strOutput & "Error Source: " & Err.source & vbCrLf

strOutput = strOutput & vbCrLf

 End If

 Err.Clear

 UnknownError = strOutput

End Function

Step #4: Attempt to Log the Error
Contrary to popular opinion, error logging is actually easy to accomplish. There are
several different ways in which it can be achieved and you may log to: the Windows
log, a database, a file, or in some circumstances, via email. When the severity of an
error is high (say, a hard drive failure), you should not just log the error (hoping that
some day, someone will read it), but forward it to the operator or system administrator
– email, SMS page, and netsend are just few of the possibilities. Under best
circumstances, you could simply log the error, and the log monitoring software could
decide about the severity of error, and appropriately relay the message to an available
human operator.

When logging an error to a database, file or an e-mail, you can choose what
information to include in the error log on top of the default information about the
standard error information. Common information entities, which can be included, are:

❑ Date and time of the error

❑ File or application that created the error

❑ Scripting Engine information

❑ Account under which user is executing the script

❑ Key variables used by the script (a mini core dump)

Obviously, with the number of additional variables, you might end up building a
fully-fledged help desk system, along with the tools to analyze the wealth of errors.

Chapter 4

140

Instead of duplicating the article, you can download the source code for the logging
component, compile it, and use it, simply by looking at the WroxLogGroup.vbg Visual
Basic project group in the support files for Chapter 4. Usage of the component is fairly
simple:

Const cError = 1 ' define log constants

Const cWarning = 2

Const cInformation = 4

Sub LogError(intErrorType)

 Dim oEvent

 Set oEvent = Server.CreateObject("WroxLog.Event")

 oEvent.Application = "My ASP Script Name"

 oEvent.Description = Err.Description

 oEvent.EventID = Err.Number

 oEvent.LogType = intErrorType

 oEvent.WriteEvent

 Set oEvent = Nothing

 Err.Clear

End Sub

' Now Fake a call to the Sub

On Error Resume Next

Err.Raise 6

If Err Then Call LogError(cError)

Windows NT Log provides a neat summary of all errors that occurred on the computer,
and include date, time, application name (source) and error ID. When the user double-
clicks on the error, more detailed information, including error description (string
insertion in our primitive case) is presented (although for a full, user friendly
description, error IDs and their descriptions would have to be added to the registry).

The last option is to use the Windows Script Host LogEvent method of the WshShell
object. Error logging via WHS 2.0 (covered in Chapter 10) is simple (it can be done from
any host except for IE), with the only drawback being the inability to change the source
of the error, and the event ID (error number) – all of this data has to be included in the
error description itself. Here is an ASP based sample, which can be used with the
UnknownError function shown in the last snippet of code in Step #3:

Error Handling, Prevention and Debugging

141

Set WshShell = Server.CreateObject("WScript.Shell")

WshShell.LogEvent 1, UnknownError(cString)

The LogEvent method will use the same constants as shown in the code above. They
are standard constants for writing to the NT log. Depending on the constant used, you
will be able to identify errors through the NT log either visually (different icons), or by
searching for particular errors:

Value Description

0 Success

1 Error

2 Warning

4 Information

8 Audit Success

16 Audit Failure

Be More Aggressive with Reporting and Testing
Script debugging is an increasingly popular testing technique thanks to a fairly robust
debugger included with Microsoft Visual InterDev, IE and Office 2000. Still, the process
of starting the debugger (without even mentioning the horrors of installation), and
stepping through the code may take the joy out of identifying errors. Often, you might
create your own reporting functions, in order to speed up the process of testing.

General Environment Check-Up
The environment on which the script is deployed may be different from the
development environment. Therefore, before you attempt to test the waters in real life,
you should ensure that everything works, based on your own development platform.
The following function checks the basics for you:

Function EnvironmentTest(sPad, blnShowServer)

 Dim strReport, oConn

 strReport = "Environment Report" & sPad

 strReport = strReport & "Scripting engine=" & ScriptEngine() & sPad

 strReport = strReport & "Buildversion = " & ScriptEngineBuildVersion() _
 & sPad

 strReport = strReport & "Majorversion = " & ScriptEngineMajorVersion() _
 & sPad

 strReport = strReport & "Minorversion = " & ScriptEngineMinorVersion() _
 & sPad

 strReport = strReport & sPad

 set oConn = Server.Createobject("ADODB.Connection")

 strReport = strReport & "ADO version = "

 strReport = strReport & oConn.version & sPad

 set oConn = Nothing

Chapter 4

142

 If blnShowServer Then

 strReport = strReport & sPad

 strReport = strReport & "Server Software ="

 strReport = strReport & Request.Servervariables("server_software") _
 & sPad

 strReport = strReport &"Script Timeout = " & Server.ScriptTimeout _
 & " seconds" & sPad

 strReport = strReport & "Session Timeout = " & Session.Timeout _
 & " minutes" & sPad

 End If

 EnvironmentTest = strReport

End Function

Response.Write EnvironmentTest("
", True)

ADO Error Report
ADO always seems to create odd errors whenever you least expect it, perhaps because
there are so many differences between providers. The function below alleviates the
problem of trying to figure out what went wrong. This is probably the most useful
reporting function, especially when working with a database application. As you
attempt to carry out some dynamic SQL building, more often than not you discover that
something is seriously wrong. The following function produces a neat report:

Function ErrorADOReport(strMsg, oConn, strSQL, sPad)

 ' produce a meaningful error report for an ADO connection object

 ' display title - strMsg, sql used - strSQL, and use different pad sPad

 Dim intErrors, i, strError

 strError = "Report for: " & strMsg & sPad & sPad

 intErrors = oConn.Errors.Count

 If intErrors = 0 Then

 ErrorADOReport = strError & "- no Errors" & sPad

 Exit Function

 End If

 strError = strError & "ADO Reports these Database Error(s) executing:" _
 & sPad

 strError = strError & strSQL & sPad

 For i = 0 To intErrors- 1

 strError = strError & "Err #" & oConn.errors(i).number

 strError = strError & " Descr:" & oConn.errors(i).description & sPad

 Next

 strError = strError & sPad

 ErrorADOReport = strError

End Function

This function simply looks at the errors collection of the ADO connection object to
enumerate through all of the errors in the collection. The function can be used from
other hosts, by passing a different line terminator, or “pad”, as one of the arguments in
order to achieve the appropriate formatting.

Error Handling, Prevention and Debugging

143

To continue with the listing, the following snippet of code shows how the function is
called, and displays the results, by simulating an error in the SQL statement:

On Error Resume Next

Set objConn = Server.CreateObject("ADODB.Connection")

objConn.Open "DSN=pubs;uid=sa;pwd="

strSQL = "select * from authors where fafa < a"

Set objRS = Server.CreateObject("ADODB.Recordset")

objRS.Open strSQL, objConn

Response.Write ErrorADOReport("open authors table", objConn, strSQL, "
")

The results of the function clearly show what went wrong, displaying the SQL statement
in question, as well as all of the errors associated with it (some people attempt to debug
SQL statements without even dumping the SQL statement):

Report for: open authors table

ADO Reports these Database Error(s) executing:
select * from authors where fafa < a
Err #-2147217900 Descr:[Microsoft][ODBC SQL Server Driver][SQL Server]Invalid
column name 'fafa'.
Err #-2147217900 Descr:[Microsoft][ODBC SQL Server Driver][SQL Server]Invalid
column name 'a'.

COM Components
Another common script breaker is the failure of COM components referenced in the
script. In order to test whether the components can be opened, you may create a mini-
test studio that will attempt to create components, and if the component cannot be
created, display the error. Changes in server configuration and installation of other
components are frequent culprits of these errors. Your application may be working one
day, but all of a sudden, it throws a number of errors:

Dim oDict, oTmp, strItem

Set oDict = Server.CreateObject("Scripting.Dictionary")

oDict.Add 1, "adodb.recordset"

oDict.Add 2, "adodb.connection"

oDict.Add 3, "adodb.command"

oDict.Add 4, "SoftArtisans.FileUp"

oDict.Add 5, "SoftArtisans.SACheck"

oDict.Add 6, "scripting.filesystemobject"

oDict.Add 7, "cdonts.newmail"

For Each strItem In oDict.Items

 On Error Resume Next

 Set oTmp = Server.CreateObject(strItem)

 If Err Then

 Response.Write strItem & " - failed. Error #" & Err.number _
 & " - " & Err.description & "
"

 Else

 Response.Write strItem & " - success
"

 End If

 Err.Clear

 oTmp = Nothing

Next

Chapter 4

144

Similar component testing script can be developed for WSH by changing line breaks,
output mechanism, and by changing Server.CreateObject to
Wscript.CreateObject. Here is a sample output created by the script:

adodb.recordset - success
adodb.connection - success
adodb.command - success
SoftArtisans.FileUp - failed. Error #-2147319779 - 006~ASP 0177~Server.CreateObject
Failed~Library not registered.
SoftArtisans.SACheck - success
scripting.filesystemobject - success
cdonts.newmail - success

Defensive Programming
Probably the best way to prevent bugs is though defensive programming, combined
with proper testing. Errors tend to occur as the complexity of the program increases.
Unfortunately, full coverage of defensive programming is a topic for an entire book, not
a sub-section of the chapter (see Code Complete by Steve McConnell, Microsoft Press,
1993 or Bug Proofing Visual Basic by Rod Stephens, John Wiley and Sons, 1998), or just
stick to the following rules of thumb:

❑ Stick to a proper naming scheme.

❑ Validate data types using IsXXXX functions, such as IsDate, IsNumeric or
IsObject, and create your own data validation functions such as IsEmail,
IsCCNumber to make sure your procedures can actually handle the data.

❑ Use constants, not magic variables.

❑ Limit the scope of variables, objects and errors.

❑ Don't use clever programming when something obvious might suffice, even if
it takes more programming.

❑ Reuse as much “stable” code as possible through includes, and components.

❑ Use parenthesis with complex expressions.

❑ Watch out for use of & and +.

❑ Watch out for variable scope.

❑ Watch out for array size.

❑ Declare and initialize your variables and objects.

❑ Watch out for endless loops.

❑ Encapsulate as much code as possible in VBScript Classes (covered in Chapter
8).

❑ Start with minimal functionality, and avoid optimization until later.

Error Handling, Prevention and Debugging

145

Debugging
The term debugging has been wrongly attributed to the pioneer programmer,
Grace Hopper. In 1944, Hopper, a young Naval Reserve officer, went to work
on the Mark I computer at Harvard, becoming one of the first people to write
programs for it. As Admiral Hopper, she later described an incident in which a
technician is said to have pulled an actual bug (a moth, in fact) from between
two electrical relays in the Mark II computer. In his book, The New Hacker's
Dictionary, Eric Raymond reports that the moth was displayed for many years
by the Navy and is now the property of the Smithsonian. Raymond also notes
that Admiral Hopper was already aware of the term when she told the moth
story.

The word bug was used prior to modern computers to mean an industrial or
electrical defect.

For a long time now, debugging has been the sore point of scripting languages. Even
though the script debugger has been available for quite some time, it has been difficult
to install and use. Needless to say, it has not gained too much popularity. Still,
successful installation of ASP script debugging on your development server will pay for
itself tenfold. There are two debuggers available, one that can be downloaded with
Internet Explorer, and another that can be installed with Visual InterDev, or MS Office
2000. The freely downloadable script debugger is actually integrated into InterDev,
however, the InterDev interface offers more choices, and it allows for smooth debugging
of ASP scripts. In this section we will discuss the concepts behind the InterDev
debugger, as it is more robust (includes the easiest ASP debugging) and more intuitive
to use. Depending on your needs, you may use the MS Script Editor (which is similar in
its functionality to InterDev), and its debugger, or the Script Debugger (which has only
some of the options of InterDev) downloadable from the Microsoft Scripting site
(http://msdn.microsoft.com/scripting/).

To launch the free script debugger from Microsoft Internet Explorer, use the
View menu, choose Script Debugger. Script Debugger starts, and then opens
the current HTML source file.

If you want to start the script editor from within Office 2000 applications, use
the Tools menu, choose Macro, and then Microsoft Script Editor.

If you are interested in switching debuggers, you can manipulate the registry to do so:
HKEY_CLASSES_ROOT\CLSID\{834128A2-51F4-11D0-8F20-
00805F2CD064}\LocalServer32

The default registry entry contains the path to the debugger, in case of the InterDev
setup on my computer it is: C:\WINNT\System32\mdm.exe , to change it to the script
debugger, I could enter <path>\msscrdbg.exe instead. In the registry, you can look
for MDM Debug Session Provider Class.

Chapter 4

146

Debugging with InterDev
In order to set up the debugging you have to follow the directions included in the set-up
instructions, including those for the InterDev server components that are available later
on during the set up of Visual Studio. The best conditions for the set-up are a local
development Windows NT Server with IIS that doubles as your InterDev workstation.
The applications set-up is fairly fast, and the debugging process is a lot smoother (as
well as easier to set up) than if the server and client were set up separately. In order to
enable ASP debugging, you must also choose the Automatically Enable ASP server-side
debugging on launch, which is available in the Launch pad of the Project's Properties
window. When you quit your debugging session, Visual InterDev restores the server
debugging settings and out-of-process setting to their previous values.

Additionally, InterDev offers just-in-time debugging, and can go automatically into
debug mode whenever an error is encountered when executing a client script.

Do NOT install a debugger, or debug, on a production machine. The InterDev
Debugger uses incredible resources on the system, and runs the application
out of process on a single thread. Essentially, changes are made to IIS and
MTS that make them run very slow.

Script debugging allows you to identify syntax, runtime and logic errors by inspection
of both the script code and the contents of its variables during the execution of the
script. Once your code is at a stage when it can be debugged, you'll be interested in
setting up breakpoints (in order to pause the execution, or 'play', of the script), stepping
through lines of script one by one, and inspecting the values of variables and objects.

There are several different ways in which these things can be accomplished. The two
main ways are with the Debug Menu, which should switch on automatically once you
start 'playing' the script, or can be switched on manually; and with the Code Window (or
its shortcut menu). Let's take a look at the Debug Menu first:

The tables below contain a description of each group of buttons on the Visual InterDev
Debug Menu shown above. Since the debug menu is also shared with Visual J++, some
of the elements, related to threading etc. are not used when debugging with InterDev:

Group I

Start Begins debugging of the project by starting the script
selected from the Project shortcut menu; this button can also
be used to continue the running of the script.

Start Without
Debugging

Project is executed, but the debugger is not started.

Error Handling, Prevention and Debugging

147

Group I

Pause Allows you to pause a running script at any time in order to
start debugging it and/or to inspect the values of its
variables.

Stop Stops the debugging session altogether.

Detach All
Processes

Used with J++

Restart Restarts the application after any type of interruption.

Run To Cursor After the execution has been paused, this allows you to set
the point within your script where the execution will
continue up to.

Group II

Step Into Allows you to execute the next line of code.

Step Over Executes the next procedure as if it were a single line of
code.

Step Out Executes the remaining lines within a procedure.

Group III

Insert Breakpoint Inserts a breakpoint at the current line.

Enable/Disable
Breakpoint

Toggles breakpoint status, allowing breakpoints to be
turned 'on' or 'off'.

Clear All
Breakpoints

Erases all of the breakpoints.

Breakpoints Shows all of the breakpoints and their advanced properties
within the Advanced Window.

Group IV

Immediate Opens the Immediate Window.

Autos Opens the Autos Window.

Locals Opens the Locals Window.

Watch Opens the Watch Window.

Threads Opens the Threads Window (only used with J++).

Table Continued on Following Page

Chapter 4

148

Group IV

Call Stack Opens the Call Stack Window.

Running
Documents

Opens the Running Documents Window.

Output Opens the Output Window.

Group V

Processes Used with J++

Java Exceptions Used with J++

The Code Window within Visual InterDev debugger (with some sample code) is shown
below, this is the sample file created previously:

To get your program to pause automatically during a
debug run, you have to set breakpoints. These can either
be based on certain conditions (e.g. breakpoint reached 5
times, or a certain expression changes), or on a particular
line of code. You may either click the mouse in the left-
margin area of the window to toggle a breakpoint, or you
can use either the Debug Menu or the Code Window
shortcut menu:

Error Handling, Prevention and Debugging

149

When you right-mouse click in the Code Window, the shortcut menu shown in the
screenshot above pops up. There are four interesting items here:

Insert
Breakpoint

By clicking Insert Breakpoint, it automatically adds a breakpoint
at the line where your cursor is located, unless the line is empty,
a declaration, or a comment.

Add Watch By clicking Add Watch over a variable, or an object, it
automatically adds it to the Watch Window. It is a very useful
feature, as it allows you to concentrate on the few variables that
you are actually interested in examining, rather than looking at
the entire stack of variables in the Locals Window.

Run To
Cursor

The Run To Cursor option allows you to execute a number of
lines of code between the current location and the line that the
cursor is pointing to. This is similar to placing a temporary
breakpoint, and then continuing execution of the code until that
breakpoint. This is useful when you are tangled in a long,
complex loop and simply want to get out of the loop as fast as
possible.

Set Next
Statement

The Set Next Statement option allows you to execute an
arbitrary line of code.

In order to start debugging an individual page, a start
page needs to be set in the project explorer window. If
your script depends on other pages (e.g. you are testing a
page that requires values from a form), set it to the first
page that is needed for the script to run properly. First go
to the project window, and select a file:

Afterwards, you can right-mouse click on the file for the pop-up menu to
appear:

Chapter 4

150

In order to start debugging, you should select the file as a Start Page. This is similar to
VB's concept of a particular form (or code) being executed when the Start button is
pressed.

During the actual debugging process, the Code Window (above) comes alive. The
majority of the features on the Debug Menu are available, and you can hover the mouse
over variables to see their current values. Additionally, you may use some of the
windows to perform specific actions. At this stage you may freely step though the code.
Code stepping, like a dance, is a certain skill that needs to be acquired. First, you need to
place your breakpoints in critical areas (or use the advanced breakpoints that can be set
programmatically), and then test different 'stepping' possibilities - especially stepping
over long routines, running to cursor, and finally, continuing the script to the next
breakpoint (by pressing Start).

The Locals Window (above) is the most complex of all the windows and, in the long run,
the least useful. It contains all the objects, variables, and object collections – along with
their names, values and subtypes – that are currently within scope of reach (global and
local variables), depending on your position in the script. Because some objects, such as
the Connection object shown, may have many collections and properties, this window
simply becomes too small for its own good. What normally happens is that you end up
frantically chasing a few variables around with the use of the scrollbar. On the other
hand, if you have only a few local variables, then it is very friendly and easy to use.

Error Handling, Prevention and Debugging

151

The Immediate Window (above) is the internal hacking tool for your script. With this
window, you can inspect and change the values of variables within your script (if you'd
rather not do this with either the Locals or Watch Windows), or run related or unrelated
code. This window also provides a good opportunity to thoroughly test your scripts by
feeding the procedures illegal values (by changing the value in the Value column), and
then testing how the error handler will be able to cope with the problem. The Immediate
Window can also give you a deeper insight into some of the interactions that occur
between different variables that would otherwise be impossible, considering that many
of the variables will only have values at runtime.

The Watch Window (above) is the user-friendlier version of the Locals Window, and has
many of the same features. For example, you are able to inspect the types, names and
values of specific variables, chosen by you, currently within scope. This has some
benefits over the Locals Window, such as being able to observe when a particular
variable comes into scope, as opposed to all of the variables that are displayed in locals
window. Additionally, you may watch a particular property of a variable, which allows
you to cut through the maze of + and - signs that would otherwise be displayed in the
object model within the locals window. Watch Window can list a collection or a property
of an object directly within the Watch Window, by specifying the member directly in the
Name column. In the example above, the oConn.Errors collection is specified, as
opposed to the entire oConn object. Entries within the Watch Window can be added
directly from the Code Window's shortcut menu, and the values manipulated.

Advanced Breakpoints
The final interesting feature of the debugger is the ability to set
smart breakpoints, by choosing Breakpoint Properties from the
pop-up menu, available when your mouse is set over a
breakpoint:

Chapter 4

152

This is the same menu as seen previously, but based on the context, you have the
capability of removing the breakpoint, disabling it, or setting some advanced properties,
as seen in the screen below:

Although the location property is disabled in InterDev debugging, the other two
properties make debugging smoother. You can:

❑ Define a conditional expression for the breakpoint. And pause execution when
expression is true, or it changes.

❑ Specify the number of times a breakpoint should be hit before pausing code
execution, using a variety of conditions. This property can also be changed
when the script is paused, and the actual number of hits monitored.

Some other aspects of debugging not described here in detail are:

❑ Autos Window - displays variables within scope of the current line of
execution.

❑ Output Window - displays status messages at runtime, not used.

❑ Call Stack - displays all procedures within the current thread of execution;
useful when you want to jump between procedures, or stack frames.

❑ Threads Window - displays threads used by the application (for J++
debugging only).

Error Handling, Prevention and Debugging

153

Common Errors and How To Avoid Them
No matter what language you use or what you are doing, there are some errors that just
keep on cropping up. Here are some of the more common ones, along with some good
tips for avoiding them:

Problem Suggestion for avoiding

Wrong data type in a variable, such
as expecting a text value from a
property instead of a number.

Explicitly declare variables, even if not
required. In VBScript, use the Dim
statement.

Use naming conventions to help you
remember variable types, such as
txtUserName for a string, fEnd for a
flag, and intCounter for an integer, etc.

Not understanding what objects are
available in a given context, such as
attempting to use the Internet Explorer
object model in a script running on a
different browser.

Be aware what objects your scripts have
access to and what the scope or context is of
an object. Be aware that objects (such as
browser built-in objects) are not an inherent
part of a language such as VBScript.

Not understanding a function or
procedure or calling the incorrect
function.

Double-check that the function you are
calling performs the task you want it to.

Incorrect arguments for functions or
arguments passed in the wrong order
or not understanding what values a
function or procedure returns.

Check syntax for functions whenever using
them.

Avoid relying on default argument values.

Not understanding a data structure,
such as the object model for a browser,
or trivial misunderstandings such as
assuming that an array index begins
with 1 instead of 0.

Check documentation for information about
structure.

Typographic errors, such as
misspelling a variable name or
keyword, or forgetting to close a
bracket.

Use consistent names to help avoid
confusion.

Type the closing portion of a statement as
soon as you type the opening portion.

Unexpected data, such as a user typing
in a string when prompted for a
number.

Anticipate errors introduced by users and
create error-handling routines.

Not understanding language
conventions, such as using the wrong
type of quotation marks to enclose
literals. This is a really easy mistake to
make when switching between
languages.

Familiarize yourself with the operators and
conventions of the language you are using.

Chapter 4

154

Summary
In this chapter we looked at the process of handling errors and debugging VBScript
code.

After configuring the host to display errors appropriately, we began by looking at the
three types of error possible and how they are caused:

❑ Syntax errors.

❑ Runtime errors.

❑ Logic errors.

Having looked at the errors we then looked at how we can handle them. First, we
looked at how we use the On Error Resume Next statement and then the Err object
and its five properties and two methods. These methods and properties allow us to
create a custom response to errors and also to Raise and Clear errors. We then briefly
looked at other ways to handle errors, such as by creating custom help files to aid the
user.

We then looked in more detail at the steps involved in dealing with errors:

❑ Diagnose what went wrong.

❑ Attempt to correct the error.

❑ Come up with a user friendly error message.

❑ Attempt to log the error.

We then covered some points on defensive programming before looking at the process
of debugging VBScript code and how the InterDev debugger can help to make this vital
process easier. Finally, we gave a list of some common errors to be aware of, and how to
avoid them.

It is impossible to cover the whole topic of error handling and debugging in one chapter,
or even in one book. Every script is different and so are the errors associated with it.
This chapter's aim was to provide you with the basic strategies for finding and
eliminating errors, and handling the remainder that the user might come across.

Error Handling, Prevention and Debugging

155

Chapter 4

156

