
1
What is ASP?

Since its introduction, the use of Microsoft's Active Server Pages, or ASP, has grown
rapidly. Many programmers consider it the tool for dynamic, easily maintainable web
content. The real power of ASP derives firstly from the fact that the HTML for the page
is only generated when the specific page is requested by the user, and secondly from
the fact that it is browser-independent, since what is sent to the browser is usually
purely HTML (although it can also include client-side code), rather than relying on the
browser to support a particular language or application.

ASP enables us to tailor our web pages to the specific requirements of our users and
their browser type, as well as our own needs. It allows us to interact with the user,
which helps to keep our site interesting and up-to-date. Although it is not the first
technology to offer dynamic page creation, it is one of the fastest and most powerful. It
is indicative of the impact that ASP has made that it has now got its own imitators.

This book is for primarily intended for developers who need a reference to the many
ways in which ASP contributes to the running of web sites and the resources we can
utilize to achieve that goal. In order to get the maximum benefit from this book you will
need to have some understanding of both ASP and the Web in general. Some
knowledge of a scripting language such as VBScript or JScript is assumed.

This is the book for you if you need easy access to the methods and properties which
the different components and objects expose, you are looking to expand the scope and
functionality of your site, or you are fairly new to ASP and need an overview of what it
has to offer. We hope that you benefit from and enjoy this book.

Firstly in this chapter we explore where ASP is derived from, look at some of the
essential building blocks of ASP and briefly explore what is new to ASP 3.0. We look at:

❑ The origins of ASP

❑ ASP, HTTP, HTML and IIS

❑ Managing state on the Web

❑ The role of global.asa



1: What is ASP?

10

❑ ASP directives

❑ Virtual applications

❑ What's new in ASP version 3.0

❑ What's new in JScript 5.0

❑ What's new in VBScript 5.0

The Origins of ASP
At the same time that the huge business potential of the Web was being realised, the
limitations of HTML and HTTP were also becoming very apparent to developers. The
static, stateless nature of HTML pages means that, although they are great for 'on-line
brochure' web sites, they do not meet the specific needs and requirements of fast-
moving business, building customer loyalty and selling goods and services. Various
technologies, including ASP, grew out of the need to create pages with content specific
to an individual user.

A simple type of customer interaction is processing information entered by a user on an
HTML form. This normally involves either a user searching for information, or
alternatively the customer entering personal information that needs to be stored by a
business for further processing. In either case, we probably want to communicate with a
database, which cannot be done purely using HTML. The initial solution to these, and
other applications that are equally problematic with HTML and HTTP, involved
reading the user input and programmatically creating a response. The interface which
the server exposed to connect HTML and other applications became known as the
Common Gateway Interface (CGI), and can be implemented in any language (the most
popular being Perl). This approach, however, requires developers to have extensive
programming knowledge and is restricted by the need to compile the code. Although
Perl and CGI are still valuable tools, several alternatives are now also available,
including ASP. This enables sections of script to be embedded in HTML pages. ASP-
embedded code can contain logic which inserts content, formats data and carries out
actions depending on decisions relating to how a page is requested.

ASP, HTTP, HTML and IIS
HyperText Transfer Protocol (HTTP) is the protocol that handles requests and responses
sent between a web server and browser. The HTTP Request is the format of any
message sent from the client to a server. It includes the URL of the required resource
and information about the client and the platform they are using. The HTTP Response
can contain a resource, a redirection to another page or site, an error message, etc.

ASP provides its own Request and Response objects, which enable us to access the
information stored in the HTTP Request message and Response headers respectively.
Using these objects we can check for certificates, read and write cookies, and get access
to browser information and forms data. We can insert data into the body of the page to
be sent to the client, redirect the browser, check if the client is connected, and manage
the sending of content so that the client does not wait for too long for long sections of
content.

The relationship between ASP and HTML can be described as follows:



ASP, HTTP, HTML and IIS

11

Active Server Pages is a technology that allows for the programmatic
construction of HTML pages for delivery to the browser.

In other words, with ASP we can write a set of instructions that can be used to generate
HTML and other content just before it is delivered. This makes it a good tool for HTML
developers, because of its power and flexibility to generate fresher HTML, and
ultimately produce more spectacular, interactive, personalized and up-to-date web
sites.

But what actually is ASP? It's not a conventional programming language in the sense
that Pascal and C++ are, although it does make use of existing scripting languages such
as VBScript or JScript. It's also not an application in the sense that FrontPage and Word
are. The best way to think of ASP is as a technology for building dynamic and
interactive web pages.

An alternative way to create dynamic pages is to use client-side scripting. This must be
written in a language interpreted by the client browser and hence code generally
consists of sections of Javascript embedded in an HTML page. This can
programmatically control the layout of the page, how the page reacts to user actions
and what is shown on the page. This is all useful but has its limitations. Typical uses for
client-side code are, for example, to respond to user actions like clicking their mouse on
the page, passing it over certain hotspots, and also checking forms prior to sending
them.

Client-side code depends on the browser supporting the scripting language, and can
fall over if the language is not supported, or includes code which differs between
implementations and language versions. A second limitation is that the code is
accessible to the user, which makes it unsuitable for passing, for example, passwords
and connection strings.

The alternative then, and this is what ASP relies on, is to include scripts which are
processed by the server. These server-side scripts do not depend on the browser or the
user's platform executing, as the result returned to the browser is typically in plain
HTML (or text, XML etc). However, server-side script is often used in conjunction with
client-side code – there's no reason why an ASP page can't contain <SCRIPT> sections.

IIS (previously called Internet Information Server, but renamed with IIS5 to Internet
Information Services) was Microsoft's answer to dynamic page creation by servers.
Originally IIS 1.0 consisted of a fairly standard setup with CGI support and an interface
to allow more efficient execution of compiled applications written in languages like C
and C++. It provided additional features to access the input and output streams. This
interface is called the Internet Server Application Programming Interface, or ISAPI.

The ASP scripting engine still uses ISAPI to connect to IIS5. It runs in-process with the
server. This means that it shares the same memory space with the server and can get
direct access to values in that memory. This does mean that if the application fails it can
cause the server to fail, but makes for a very efficient and fast process and generally
gives ASP the edge over other technologies.



1: What is ASP?

12

What does ASP Code Look Like?
When a web author writes an ASP page, it is likely to be composed of a combination of
three types of syntax – some ASP, some HTML tags, and some pure text. The following
table summarizes these ingredients, their purpose, and their appearance:

Type Purpose Interpreter Hallmarks

Text This is hard-
coded
information to be
shown to the user

The viewer's
browser
shows the text

Simple ASCII text.

HTML tags This consists of
instructions to the
browser about
how to format
text and display
images

The viewer's
browser
interprets the
tags to format
the text

Each tag within < >
delimiters.

Most HTML tags come
in pairs (an open tag
and a close tag), e.g.
<TABLE>, </TABLE>.

ASP
statements

This consists of
instructions to the
web server
running ASP
about how to
create portions of
the page to be
sent out

The web
server's DLL
asp.dll
performs the
ASP
commands

Each ASP section
contained within <%
%> delimiters.

ASP statements support
features such as
variables, decision
trees, cyclical
repetitions etc.

The file containing these constituent parts of the ASP page is saved with an .asp
extension.

It's not too hard to distinguish the different elements of the ASP page. Anything that
falls between the <% and %> markers is ASP script, and will be processed on the web
server by the ASP script engine.

Lets take a look at an example and at the same time demonstrate one of the keys to
ASP's success – how easy it is to get started. For example, consider the few lines of code
below:

<HTML>
<P>This date/time is now : <%= Now() %> </P>
</HTML>

The content of the resulting web page depends on the HTML that is generated by the
ASP code. In this particular example, the effect of the script code is to generate HTML
for the time and date that the page is requested, and then to make a decision (based on
the situation) on what text will be sent to the browser as part of the HTML stream.



ASP, HTTP, HTML and IIS

13

How does ASP Work
ASP works with a single DLL called asp.dll (or alternatively the ASP scripting
engine). This is installed by default into your WinNT\System32\Inetsrv directory.
This DLL is responsible for taking an ASP page (indicated by the .asp file extension)
and parsing it for any server-side script content. The script is passed to the appropriate
scripting engine, to interpret for example the VBScript or JScript. The results of
executing the script are combined with any text and HTML in the ASP page and the
completed page is then sent back the client browser via the web server.

To see this, open the Internet Services Manager from the Administrative Tools section of
your Start menu (for Windows 2000 Server version – or go to it via Administrative Tools
in your Control Panel with Windows 2000 Professional). This runs the Microsoft
Management Console (MMC) to display the entire Internet Information Services tree for
IIS, which looks something like this:



1: What is ASP?

14

Right-click on the Default Web Site entry and select Properties, then the Home Directory
page:

In the lower half of the page there is a name for the application and the Execute
Permissions and Application Protection settings.

Then, click the Configuration
button to open the Application
Configuration dialog. In the
App Mappings tab, you can see
the way that IIS links each
type of file (using the file
extension) with a specific DLL:

Any pages that have the .asp file extension are sent to the asp.dll for processing;
you can see our global.asa page (which we discuss later in this chapter) is also
mapped to the asp DLL, as well as several others. Pages with file extensions that are not
mapped to a DLL, for example .html and .htm for HTML pages, and .xml for XML
files, are simply loaded from disk and sent directly to the client.



ASP, HTTP, HTML and IIS

15

You might like to have a look at the other file types in this page. Pages with
.ida, .idc, and .idq file extensions are sent to the DLL
httpodbc.dll for processing. As you can guess from its name, it uses
ODBC (discussed later in this book) to execute a SQL statement that returns a
set of records for inclusion in the page. Likewise, the .shtm, .shtml and
.stm file extensions are mapped to a DLL named ssinc.dll. These file
types are traditionally used for files that require server-side include (SSI)
processing.

While you have the Application Configuration and Properties dialogs open, you might
want to briefly explore it (just don't change any settings for the moment, unless you're
sure that you know what you're doing, the defaults usually suffice!).

Processing an ASP File
When asp.dll receives an ASP page, it converts it to an output suitable for the server
to send to the client. It deals with any script marked for its attention, evaluating it, and
sending the result on to the server. It does this by first checking the page to see if
contains any ASP code. If it does not find any, it informs IIS to send the page to the
client. A new feature of Windows 2000 means that this is done with no marked
performance penalty.

When ASP receives a page that does contain server-side scripting, it parses it line by
line and each section of script is passed to the approproate scripting engine for
compiling and execution. The result of this is inserted into any content which does not
require server intervention by ASP and the whole is passed on to the client.

To make this more efficient, ASP caches the compiled code so that it does not need to be
compiled again unless the source is changed. The result of this is that subsequent
requests for the specific page are returned more quickly as the compilation stage is
bypassed.

Including Separate Script Files
An additional feature is the ability to include separate files that contain script code. This
allows us to write generic functions and both encourages and greatly simplifies code re-
use. It also allows us to encapsulate processes which depend on the setup of our system
and our server, and so may change.

Scripting Performance Issues
Web servers generally have plenty of spare processor cycles available (except on the
busiest of sites) because the main task they have is loading pages from disk and sending
them to the client. Therefore, each page request results in the processor waiting for the
disk to respond. These spare cycles mean that ASP scripts can usually be executed with
very little overall hit on performance. To add to this, as most page requests will be for
pages where a compiled version of the script code is available, only the execution of this
script needs to take place.

Of course, as the number of requests, and hence the server load, increases, the effect of
having to parse and execute each ASP page takes its toll. It's wise, therefore, to squeeze
as much performance as possible from the ASP interpreter. Here are some useful tips:



1: What is ASP?

16

Avoid Mixing Scripting Languages on the Same Page
Using both scripting languages on any one page has an effect on the execution order of
the code. This will mean both scripting engines will be loaded by the ASP DLL,
increasing memory usage and the time taken to process the request.

Avoid Excessive Context Switching Between Script and Other Content
Having sections of ASP interspersed within other content can have a significant effect
on the time it takes to process the page request. Every time a section of script ends,
control is passed back to IIS (and vice versa) and this will have an impact on
performance. An alternative to this is to use the Response.Write method (rather than
using <% = ...%> ) and this is recommended for any but small sections of code.

Build a Separate Component
For any complex processes, consider building a separate componant to install on the
server. This will be far more efficient than instantiating and interpreting ASP script
code. This will become even more important with the next version of ASP (currently
called ASP+) in which almost everything is done using COM+.

Managing State on the Web
In a normal single-user program, such as when we build an executable application (an
.exe file for example) using C++, Delphi etc., we take for granted the fact that we can
declare a global (or Public) variable and then access it from anywhere in our code. All
the time the application is running, the value remains valid and accessible.

The ability to hold values in memory, and relate specific values to specific users,
provides state. You can think of it as representing the values and context of the
applications' and users' internal variables throughout the life of the application.

When we create web-based applications, we often need be able to provide an individual
state for each user. This might be as simple as remembering their name, or as complex
as storing object references or recordsets that are different for each user. If we can't do
that, we can't reasonably expect to do anything that requires more than one ASP page,
as the variables and other references in that page are all destroyed when the page is
finished executing. When the user requests the next page, we've lost all the information
that they've already provided.

It is also useful to be able to store values that are global to all users. An obvious
example is a web-style visitor counter. There's not much point in giving each user their
own counter, because they usually want to see the total number of visitors, not just the
number of times that they have visited. The number of visitors needs to be stored with
application-level state, rather than user-level state.

With ASP we need a way of storing state information, otherwise variables and
references within a page are destroyed when that page has finished execution. One of
the ways of providing state between page requests and site visits is through cookies,
which are sent along with each page request to the domain for which the cookie is
valid. ASP uses a cookie to provide the concept of a user session, which we interact with
through the ASP Session object.



The Role of global.asa

17

A new and separate Session object is created for each individual visitor when they
first access an ASP page on the server. A session identifier number is allocated to the
session, and a cookie containing a specially encrypted version of the session identifier is
sent to the client. The Path of the cookie (see the previous chapter for a description of
cookie properties) is set to the path of the root of the ASP application running on our
server. This will be the root of the Default Web site (i.e. "/") or the root directory of the
ASP application containing the page they request. No Expires value is provided in the
cookie, so it will expire when the browser is closed.

Every time that this user accesses an ASP page, ASP looks for this cookie, named
ASPSESSIONIDxxxxxxxx, where each x is an alphabetic character. If found, it can be
used to connect the visitor with their current Session, which is held in memory on the
server.

This cookie doesn't appear in the Request.Cookies or Response.Cookies
collections. ASP hides it from us, but it's still there on the browser and ASP looks for it
with each ASP page request.

If the client browser doesn't accept or support cookies, each new page request forces a
new session to be created, thus state cannot be maintained without cookies.

As a warning you might note that if the browser does not support, or is set to reject,
cookies this function will not be available. What do we do then? An alternative is to
have server-side cookies. The information is stored on the server and matched to each
user. We can then persistently store information on that user for a length of time
determined by ourselves. This just leaves matching the user to their information and
this can be done with the use of logins. Each time that a user enters the domain of our
server they can be asked to log in with their name and password. We can then make
our site available to them according to their specific needs and preferences.

In addition we can restrict access to resources so that we can expose varying levels of
access to the general public, clients of the company or subscribers, staff or site
administrators. Now we are starting to have a level of control over our site which in
any other application we might take for granted.

The Role of global.asa
All ASP applications can contain a file named global.asa, placed in the root
directory of the application and which applies to all sub-directories of this. The
global.asa file in the root directory of the entire web site (Inetpub\wwwroot)
defines the whole site as being part of the Default ASP application.

The global.asa file can contain code that instantiates objects and creates and sets the
values of variables that will be available in either Application-level or Session-level
scope. Object instances can be created using the Server.CreateObject method or an
<OBJECT> element.

Creating Object Instances
If an <OBJECT> element is used, the SCOPE attribute can be set to "Application" or
"Session", and the object is then created in the appropriate context:



1: What is ASP?

18

<!-- Declare ASPCounter component with application-level scope -->
<OBJECT ID="ASPCounter" RUNAT="Server" SCOPE="Application"
        PROGID="MSWC.Counters">
</OBJECT>

<!-- Declare ASPContentLink component with session-level scope -->
<OBJECT ID="ASPContentLink" RUNAT="Server" SCOPE="Session"
        PROGID="MSWC.NextLink">
</OBJECT>
...

The remainder of the global.asa file can contain ASP script that defines event
handlers that run when the application or a user session starts or ends. Using VBScript
this looks like:

...
<SCRIPT LANGUAGE="VBScript" RUNAT="Server">

Sub Application_OnStart()
   'Code here is executed when the application starts
End Sub

Sub Application_OnEnd()
   'Code here is executed when the application ends
End Sub

Sub Session_OnStart()
   'Code here is executed when a user session starts
End Sub

Sub Session_OnEnd()
   'Code here is executed when a user session ends
End Sub

</SCRIPT>

Or using JScript:

...
<SCRIPT LANGUAGE=JScript RUNAT=Server>

function Application_OnStart() {
   // Code here is executed when the application starts
}

function Application_OnEnd() {
   // Code here is executed when the application ends
}

function Session_OnStart() {
   // Code here is executed when a user session starts
}

function Session_OnEnd() {
   // Code here is executed when a user session ends
}

</SCRIPT>

Within the OnStart event handlers, script code can be used to instantiate objects with
the Server.CreateObject method. This code creates an instance of the Ad Rotator
component (see Chapter 15):

Set Session("ASPAdRotator") = Server.CreateObject("MSWC.AdRotator")



The Role of global.asa

19

If placed in the Application_OnStart event handler, the object will have
application-level scope. If placed in the Session_OnStart event handler, the object
will have session-level scope, i.e. each visitor will have a separate instance of the object.
The Server.CreateObject method is covered in detail in Chapter 7.

Referencing Object Type Libraries
Many objects and components provide enumerated and other constants which the
various methods take as their paramters. This allows us to use the constant's name in
place of its value. These constants can be referenced through the METADATA directive.
Using the METADATA directive we can specify a type-library which ASP will then load
when the page is executed. The syntax for this is shown below:

<!-- METADATA TYPE="TypeLib"
              FILE="path_and_name_of_file" | UUID="type_library_uuid"
              [VERSION="major_version_number.minor_version_number"]
              LCID="locale_id" -->

where:

❑ path_and_name_of_file is the absolute physical path to a type library file
(.tlb) or ActiveX DLL. If this is not provided the type_library_uuid must
be specified.

❑ type_library_uuid is the unique identifier for the type library. Either this
or the path_and_name_of_file parameter must be provided.

❑ major_version_number.minor_version_number (optional) defines the
version of the component required. If this version is not found the most recent
version is used.

❑ locale_id (optional) is the locale identifier to be used. If a type library with
this locale is not found the default locale for the machine (defined during
setup) will be used.

For example, this code makes the intrinsic ADO pre-defined constants available in an
ASP page:

<!-- METADATA TYPE="TypeLib"
              FILE="c:\Program Files\Common Files\System\ado\msado15.dll"
-->

In order to maintain backward compatibility the file name msado15.dll is
used for later (i.e. ADO 2.5) versions of the ADO component.

If ASP is unable to load the type library, it will return an error and halt execution of the
page. The possible error values are:

Error Description

ASP 0222 'Invalid type library specification'.

ASP 0223 'Type library not found'.

ASP 0224 'Type library cannot be loaded'.

ASP 0225
'Type library cannot be wrapped' (i.e. ASP cannot create a
type library wrapper object from the type library specified).



1: What is ASP?

20

Web Applications
We have used the term web application a number of times rather loosely, to indicate
something that isn't really a web site, but isn't a 'traditional' application (an .exe file
for example) either. We can think of a web application as a set of web pages and other
resources, such as COM+ objects, that are designed to carry out some task.

A COM object is an instance of a COM component, which should be thought
of as a compiled piece of code that can provide a service to the system, not just
a single application. (COM objects are discussed further in Chapter 2, ASP,
Windows 2000 and Windows DNA.)

When IIS and ASP are installed in Windows 2000, a Default Web Site is created. This is
configured as an ASP application, which involves several settings in the Properties
dialog, that we looked at earlier. The global.asa is used to determine the way that
this default application behaves.

Virtual Applications
In addition to the default web application, ASP virtual applications can be created in
any subdirectory of the web site. All sub-directories will then be part of this virtual
application. Now, because the directory is itself within the default application for the
site, this means that it will share the global space created by the default Application
object. Any variables stored in the default application are available within the
application; however, if an ASP page in the virtual application overwites a global value,
the original value is maintained for the root application. This offers some protection to
the server and other applications running alongside.

Creating ASP Virtual Applications
In Internet Services Manager, right-click on the directory in which you wish to create
the new virtual application, select New, then Virtual Directory. This starts the New
Virtual Directory Wizard, which steps through the settings required. This includes the
name (or alias) for the new virtual application. Combined with the path of the directory
selected in Internet Services Manager, this will become the URL of the application. To
convert an existing directory into an application with the same name as the directory,
select the directory containing the one you want to convert and use the directory name
in the Virtual Directory Alias page of the wizard.

The wizard also allows you to specify the path that contains the content (pages) for the
application. You can click Browse to select an existing directory. This is the directory
that the new virtual application will point to. The final step allows you to select the
access permissions, with the default being Read and Run Scripts. These settings can be
changed later if required. The wizard then creates the new application, and marks it in
Internet Services Manager with an 'open box' icon:



Web Applications

21

Right-click the new application and select Properties to see the settings that the wizard
has chosen. The Local Path, access permissions, and Application Settings can be
changed here if required. You'll also see a Remove button, which we can use to remove
the virtual application:



1: What is ASP?

22

Clicking the Remove button doesn't actually remove the entry in Internet Services
Manager. Instead, it converts the existing virtual application into a virtual directory. It
will have a 'folder' icon with a 'globe' on it, indicating that this is a redirection to another
folder on disk. It is accessed in the same way as the virtual application from which it
was created (i.e. using the same URL), but does not act as an application. In other
words, it doesn't support its own Application object but inherits the one for the
default web site, or for another application within this directory's parent directories.

To delete a virtual application, select Delete from the right-click shortcut menu for the
application in Internet Services Manager.

Virtual Application Configuration
Virtual applications provide control and management of objects and components that
are instantiated in pages within that application's directories. The settings for a virtual
application provide control over whether objects are created in the memory space of the
web server, or separately in shared or individual out-of-process instances of
DLLHost.dll.

The Properties dialog in Internet Services Manager provides these settings. At the
bottom of the Home Directory page of the Properties dialog for a virtual application are
two combo boxes marked Execute Permissions and Application Protection:

Application Protection and Execution Settings
The Execute Permissions options are:

Execute Permission Description

None No scripts or executables can be run in this virtual
application. In effect, this provides a quick and easy
way to disable an application if required.

Scripts Only Allows only script files, such as ASP, IDC or others to
run in this virtual application. Executables cannot be
run.

Scripts and Executables Allows any script or executable to run within this
virtual application.



Web Applications

23

While the Execute Permissions options control the type of execution that can take place
in the virtual application, the Application Protection options affect the way that
executables and components are run. The available options are:

Application
Protection

Description

Low (IIS Process) All application executables and components for ASP
virtual applications with this setting are run in the process
(i.e. the memory space) of the web server executable
(Inetinfo.exe). Hence the web server is at risk if any
one of the executables or components should fail. This
provides the fastest and least resource-intensive
application execution option.

Medium (Pooled) (Default) All application executables and components from
all ASP virtual applications with this setting are run in the
process (i.e. the memory space) of a single shared instance
of DLLHost.exe. This protects the web server executable
(Inetinfo.exe) from the risk of any one of the
executables or components failing. However, one failed
executable or component can cause the DLLHost.exe
process to fail, and with it all the other hosted executables
and components.

High (Isolated) All application executables and components for an ASP
virtual application with this setting are run in the process
(i.e. the memory space) of a single instance of
DLLHost.exe, but each ASP application has its own
instance of DLLHost.exe that is exclusive to that
application. This protects the web server executable
(Inetinfo.exe) from the risk of any one of the
executables or components failing, and protects the virtual
application from risk if an executable or component from
another virtual application should fail. Microsoft suggests
that a maximum of ten isolated virtual applications should
be hosted on any one web server.

Microsoft recommends a configuration where mission-critical applications run in their
own processes, i.e. High (Isolated), and all remaining applications in a shared, pooled
process, i.e. Medium (Pooled).

Threading Issues and Object Scope
One other factor that affects the performance of instantiated objects and components is
the threading model that they use. This also controls the scope in which they will
perform successfully. There are five different threading models:

❑ Single-threaded components allow only one process to access the component at
a time, and so each must wait in turn for the component to become available.
Single-threaded components should never be used in ASP.



1: What is ASP?

24

❑ Apartment-threaded components allow multiple instances of an object to be
created, with each user getting their own instance. Object instances cannot be
shared amongst processes, however. Apartment-threaded components are
suitable for use in ASP with certain limitations as described in the table below.

❑ Free-threaded components allow multiple processes to access them
concurrently, so a single instance can service more than one process. However,
access is slower than with apartment-threaded objects as each access has to
cross a process boundary. Free-threaded objects are suitable for use in ASP
pages.

❑ Both-threaded components can act as though they are either apartment-
threaded or free-threaded, depending on the context of the calling application.
Both-threaded objects are suitable for use in ASP pages.

❑ Neutral-threaded components (new in Windows 2000 with COM+) allow
multiple instances of the object to be created like apartment-threaded
components. However, they do not limit each instance to always working in
the same process, and so can be shared amongst requests. Neutral-threaded
components are the best choice for ASP applications, although few tools are
currently able to create this type of component.

This is only an overview of the different component types.
Threading issues are covered further in Chapter 41, Optimizing
ASP Performance. For an exhaustive technical discussion of
threading issues see Beginning ASP Components from Wrox
(ISBN 1-861002-88-2).

Object instances can be created in three different levels of scope:

❑ Application-level scope means that the object will be available to all pages
within that virtual application (or the default web site). One instance of the
object will service all requests from all users. For this reason, only both-
threaded or neutral-threaded components should be used in application-level
scope. However, if possible, avoid using any components at application-level
scope at all as this always risks becoming a performance limitation.

❑ Session-level scope means that one object instance will service all requests from
a single user within their ASP session. Both-threaded or neutral-threaded
components work well at session-level scope, because they do not tie the
session to a single process thread, as do apartment-threaded objects. Again, if
possible, avoid using any components at session-level scope unless it is
absolutely necessary.

❑ Page-level scope means that the object is created and destroyed within a single
ASP page. While this seems to be inefficient, the COM+ Component Services
within Windows 2000 are specially designed to make this fast and provide
minimum use of resources. Objects can be pooled and/or recreated very
quickly. With the exception of single-threaded components, any threading
model is acceptable at page-level scope. However, apartment-threaded objects
generally provide the best performance here.



ASP Directives

25

ASP Directives
For each page that we put together we have several options which we can set which
affect the way that the server processes it. A processing directive is always the first line
of the ASP Page and is delimited by <%@…%>. The outside section you may recognize as
the standard way of informing asp.dll that inside it there is content pertinent to it.
The additional @ sign denotes that it is the processing directive. This may contain all or
any of the following keywords; if none are required this line can be omitted:

Processing Directives Description

CODEPAGE-"code-page" This defines the character set for this page.
The code page is the numeric value of the
character set. This value may differ between
locales and languages to support both
additional and alternative characters.

ENABLESESSIONSTATE="True
|False"

This value can be set to False in which case
no session cookie is set to the browser, this
effectively disables sessions. The default is
True. The main reason for doing this is to
improve efficiency for pages that do not
require state information.

LANGUAGE="language-name" This sets the default language for the page.
This does not preclude use of other
languages within that page. The default
language if this is not specified is VBScript,
unless the default for the entire application
has been changed.

LCID="locale-identifier" An integer value which uniquely identifies
the locale from which the page has been sent.
This may affect such things as the currency
symbol used.

TRANSACTION="transaction
_type"

This directive specifies that the page will run
under a transaction context. See Chapter 34,
Transactions and Message Queuing.

What's New in ASP Version 3.0
If you're already familiar with ASP 2.0, and are looking for a concise list of what has
actually changed in version 3.0, you'll find the information below:

Summary of New Features in ASP 3.0
These are the new, or substantially changed and improved, features which have been
added to ASP in version 3.0. (Also see Chapter 2, ASP, Windows 2000 and Windows
DNA for details of how Windows 2000 improves ASP 3.0.)



1: What is ASP?

26

Scriptless ASP
ASP is now much faster at processing .asp pages that don't contain any script. If you
are creating a site or Web application where the files may eventually use ASP, you can
assign these files the .asp file extensions, regardless of whether they contain server–
side script or only static (HTML and text) content.

New Flow Control Capabilities
A new feature to ASP 3.0 is an alternative to the Response.Redirect statement.
Effectively this sent an instruction to the client browser to load an alternative page.
Unfortunately, this is both error-prone and a slow process. In ASP 3.0, two new
methods to the server object allow page transfers without browser intervention.

Server.Transfer transfers execution to another page, while Server.Execute will
execute another page then return control to the original one. Inside the new page you
can access the original page's context, including all the ASP objects like Response and
Request, but you lose access to page scope variables. If the original page indicates that
it is a transaction type in the processor directive (the opening <%@...%> element), the
transaction context is passed to the new page. If this happens and the second ASP file's
transaction flag indicates that transactions are supported or required, then an existing
transaction will be used and a new transaction will not be started.

Error Handling and the New ASPError Object
Configurable error handling is now available, by providing a single custom ASP page
that is automatically called if an error occurs with the Server.Transfer method. In
that page, Server.GetLastError can be used to return an instance of the new
ASPError object, which contains more details about the error including the error
description and the relevant line number.

Encoded ASP Scripts
ASP script and client-side script can now be encoded using Base64 encryption, and
higher levels of encryption are planned for future releases of ASP. (Note that this
feature is implemented by the VBScript 5.0 and JScript 5.0 scripting engines, and so
requires them.) Encoded scripts are decoded at run time by the script engine, so there's
no need for a separate utility. Although not a secure encryption method, it does prevent
casual users from browsing or copying scripts.

A New Way to Include Script Files
Rather than using the <!-- #include ... --> element to force IIS to server-side
include a file containing script code, ASP 3.0 can do the 'including' itself. The
<SCRIPT> element can be used with RUNAT="SERVER" and
SRC="file_path_and_name" attributes to include files containing script code. The
full and relative physical path or virtual path of the file can be used in the SRC
attribute:

<SCRIPT LANGUAGE="language" RUNAT="SERVER" SRC="path_and_filename">
</SCRIPT>



What's New in ASP Version 3.0

27

Server Scriptlets
ASP 3.0 supports a powerful new scripting technology called server scriptlets. These are
XML-format text files that are hosted on the server and become available to ASP as
normal COM objects (i.e. Active Server Components). This makes it much easier to
implement (or just prototype) your web application's business logic script procedures
as reusable components, as well as using them in other COM-compliant programs.

Performance-Enhanced Active Server Components
Many of the Active Server Components that come with ASP have been improved to
provide better performance or extra functionality. One example is the new Browser
Capabilities component. In addition, there are some new components, such as the XML
Parser that allows applications to handle XML formatted data on the server. Closer
integration between ADO and XML is also provided (through the new version 2.5 of
ADO that ships with Windows 2000), which opens up new opportunities for storing
and retrieving data from a data store in XML format.

Performance
A great deal of work has been done to improve performance and scalability of ASP and
IIS. This includes self-tuning features in ASP, which detect blocking situations and
automatically increase the number of available process threads. ASP now senses when
requests that are currently executing are blocked by external resources, and
automatically provides more threads to simultaneously execute additional requests and
to continue normal processing. If the CPU becomes overloaded, however, ASP reduces
the number of available threads, to minimize the thread switching that occurs when too
many non-blocking requests are executing simultaneously.

Changes from ASP Version 2.0
These are the features that have been changed or updated from version 2.0.

Buffering is On by Default
ASP has offered optional output buffering for some time. Since IIS 4.0, this has
provided much faster script execution, as well as the ability to control the output that is
streamed to the browser. In ASP 3.0, this improved performance has been reflected by
changing the default setting of the Response.Buffer property to True, so that
buffering is on by default. This means that the final output will be sent to the client only
at the completion of processing, or when the script calls the Response.Flush or
Response.End method.

Note that you should turn buffering off by setting the
Response.Buffer property to False when sending XML-formatted
output to the client to allow the XML parser to start work on it as it is
received. You may also want to use Response.Flush to send sections of
very large pages, so that the user sees some output arrive quickly.



1: What is ASP?

28

Changes to Response.IsClientConnected
The Response.IsClientConnected property can now be read before any content is
sent to the client. In ASP 2.0, this only returned accurate information after at least some
content had been sent. This resolves the problem of IIS responding to every client
request, even though the client might have moved to another page or site. Also, if the
client is no longer connected after three seconds, the complete output that has been
created on the server is dumped.

Query Strings with Default Documents
When a user accesses a site without providing the name of the page they require, the
default document is sent back to them. However, if a query string is appended to that
URL this is now passed to the default page. In previous versions this information was
lost. For example, if the default page in a directory that has the URL
http://www.wrox.com/store/ is default.asp, then both the following will send
the name/value pair code=1274 to the default.asp page:

http://www.wrox.com/store/?code=1274
http://www.wrox.com/store/default.asp?code=1274

Server-side Include File Security
Server-side include files are often used for sensitive information, such as database
connection strings or other access details. In ASP 2.0 specifying the virtual path of a file
in a server side include to specify a file bypassed the security checking for the file. In
other words the authenticated or anonymous account was not compared with the
access control list entries for the file.

In ASP 3.0 on IIS 5.0, these credentials are now checked, and can be used to prevent
unauthorized access.

Configurable Entries Moved to the Metabase
In IIS 5.0, the registry entries for ProcessorThreadMax and ErrorsToNTLog have
been moved into the metabase. All configurable parameters for ASP can be modified in
the metabase via Active Directory and the Active Directory Service Interface (ADSI).

Behavior of Both-Threaded Objects in Applications
For best performance in ASP, where there are often multiple concurrent requests,
components should be Both-Threaded (Single Threaded Apartment (STA) and Multi-
Threaded Apartment (MTA)) and support the COM Free-Threaded Marshaller (FTM).
Both-Threaded COM objects that do not support the Free-Threaded Marshaller will fail
if stored in the ASP Application state object.

Earlier Release of COM Objects
In IIS 5.0, instantiated objects or components are now released earlier. In IIS 4.0, COM
objects were only released when ASP finished processing a page. In IIS 5.0, if a COM
object does not use the OnEndPage method, and the reference count for the object
reaches zero, then the object is released before processing completes.



What's New in JScript 5.0

29

COM Object Security
IIS uses the new cloaking feature provided by COM+ so that local server applications
instantiated from ASP can run in the security context of the originating client. In
previous versions, the security context assigned to the local server COM object
depended on the identity of the user who created the instance.

Components Run Out-of-Process By Default
In earlier versions of ASP, all components created within the context of an ASP page
ran in-process by default, i.e. within the memory space of the web server. In IIS 4.0, the
ability to create a virtual application allowed components to be run out-of-process. In IIS
5.0 and ASP 3.0, components are now instantiated out-of-process by default. This is
controlled by the metabase property AspAllowOutOfProcComponents, which now
has a default value of 1. Setting it to zero changes the default back to that of IIS 4.0.

To better fine-tune the component performance to Web server protection trade-off, you
can now choose from the three options for Application Protection in the Properties
dialog for a virtual application; see earlier in this chapter. The recommended
configuration is to run mission-critical applications in their own processes – i.e. High
(Isolated) – and all remaining applications in a shared, pooled process – i.e. Medium
(Pooled). It is also possible to set the Execute Permissions for the scripts and
components that make up each virtual application. The three options are: None, Scripts
only, or Scripts and Executables.

What's New in JScript 5.0
The only change to JScript is the long-awaited introduction of proper error handling.

Exception Handling
The Java-style try and catch constructs are now supported in JScript 5.0. For
example:

function GetSomeKindOfIndexThingy() {

  try {
    // If an exception occurs during the execution of this
    // block of code, processing of this entire block will
    // be aborted and will resume with the first statement in its
    // associated catch block.
    var objSomething = Server.CreateObject("SomeComponent");
    var intIndex = objSomething.getSomeIndex();
    return intIndex;
  }

  catch (exception) {
    // This code will execute when *any* exception occurs during
    // the execution of this function
    alert('Oh dear, the object didn't expect you to do that');
  }

}



1: What is ASP?

30

The built-in JScript Error object has three properties that define the last run-time error.
We can use these in a catch block to get more information about the error:

alert(Error.number);  // Gives the numeric value of the error number
// AND the result with 0xFFFF to get a 'normal' error number in ASP

alert(Error.description);  // Gives an error desciption as a string

If you want to throw your own errors, you can raise an error (or exception) with a
custom exception object. However there is no built-in exception object, so you have to
define a constructor for one yourself:

// Define our own Exception object
function MyException(intNumber, strDescription, strInfo) {
  this.Number = intNumber;            // Set the Number property
  this.Description = strDescription;  // Set the Description property
  this.CustomInfo = strInfo;          // Set some 'information' property
}

An object like this can then be used to raise custom exceptions within our pages, by
using the throw keyword and then examining the type of exception in the catch
block:

function GetSomeKindOfIndexThingy() {
  try {
    var objSomething = Server.CreateObject("SomeComponent");
    var intIndex = objSomething.getSomeIndex();
    if (intIndex == 0) {
      // Create a new MyException object
      theException = new MyException(0x6F1, "Zero index not " +
                                    "permitted", "Index_Err");
      throw theException;
    }
    return intIndex;
  }

  catch (objException) {
    if (objException instanceof MyException) {
      // This is one of our custom exception objects
      if (objException.Category == "Index_Err") {
         alert('Index Error: ' + objException.Description);
      else
        alert('Undefined custom error:' + objException.Description);
      }
      else
        // Not "our" exception, display & raise to next high routine
        alert(Error.Description + ' (' + Error.Number + ')');
        throw exception;
    }
  }
}

What's New in VBScript 5.0
The features that are available in ASP include those provided by the scripting engines,
which means that improvements there are also available in ASP. The changes to
VBScript are as follows.



What's New in VBScript 5.0

31

Using Classes in Script
The full Visual Basic Class model is implemented, with the obvious exception of
events in ASP server-side scripting. You can create classes within your script, which
make their properties and methods available to the remainder of the code in your page.
For example:

Class MyClass

  'local variable to hold value of HalfValue
  Private m_HalfValue

  'executed to set the HalfValue property
  Public Property Let HalfValue(vData)
    If vData > 0 Then m_HalfValue = vData
  End Property

  'executed to return the HalfValue property
  Public Property Get HalfValue()
    HalfValue = m_HalfValue
  End Property

  'implements the GetResult method
  Public Function GetResult()
    GetResult = m_HalfValue * 2
  End Function

End Class

Set objThis = New MyClass

objThis.HalfValue = 21

Response.Write "Value of HalfValue property is " & _
               objThis.HalfValue & "<BR>"
Response.Write "Result of GetResult method is " & _
               objThis.GetResult & "<BR>"
...

This produces the result:

Value of HalfValue property is 21
Result of GetResult method is 42

The With Construct
The With construct is now supported, allowing more compact scripts to be written
where the code accesses several properties or methods of one object:

...
Set objThis = Server.CreateObject("This.Object")

With objThis
  .Property1 = "This value"
  .Property2 = "Another value"
  TheResult = .SomeMethod
End With
...



1: What is ASP?

32

String Evaluation
The Eval function (long available in JavaScript and JScript) is now supported in
VBScript 5.0. This allows you to build a string containing script code that evaluates to
True or False, and then execute it to obtain a result:

...
datYourBirthday = Request.Form("Birthday")
strScript = "datYourBirthday = Date()"

If Eval(strScript) Then
   Response.Write "Happy Birthday!"
Else
   Response.Write "Have a nice day!"
End If
...

Statement Execution
The new Execute function allows script code in a string to be executed in much the
same way as the Eval function, but without returning a result as is usually the case
with the Eval statement. It can be used to dynamically create procedures that are
executed later in the code. For example:

...
strCheckBirthday = "Sub CheckBirthday(datYourBirthday)" & vbCrlf _
             & "  If Eval(datYourBirthday = Date()) Then" & vbCrlf _
             & "    Response.Write ""Happy Birthday!""" & vbCrlf _
             & "  Else" & vbCrlf _
             & "    Response.Write ""Have a nice day!""" & vbCrlf _
             & "  End If" & vbCrlf _
             & "End Sub" & vbCrlf
Execute strCheckBirthday
CheckBirthday(Date())
...

Either a carriage return (as shown) or a colon character ':' can be used to delimit the
individual statements within the string.

Setting Locales
The new SetLocale method can be used to change the current locale of the script
engine. This enables it to properly display special locale-specific characters, such as
those with accents or from a different character set:

strCurrentLocale = GetLocale
SetLocale("en-gb")

Regular Expressions
VBScript 5.0 now supports regular expressions (again, long available in JavaScript,
JScript and other languages). The RegExp object is used to create and execute a regular
expression. For example:



What's New in VBScript 5.0

33

strTarget = "test testing tested attest late start"
Set objRegExp = New RegExp      'create a regular expression

objRegExp.Pattern = "test*"     'set the search pattern
objRegExp.IgnoreCase = False    'set the case sensitivity
objRegExp.Global = True         'set the scope

Set colMatches = objRegExp.Execute(strTarget)  'execute the search

For Each Match in colMatches     'iterate the colMatches collection
  Response.Write "Match found at position " & Match.FirstIndex & "."
  Response.Write "Matched value is '" & Match.Value & "'.<BR>"
Next

This produces the result:

Match found at position 0. Matched value is 'test'.
Match found at position 5. Matched value is 'test'.
Match found at position 13. Matched value is 'test'.
Match found at position 22. Matched value is 'test'.

Setting Event Handlers in Client-side VBScript
While not applying directly to ASP scripting techniques, this new feature is useful
when writing client-side VBScript. You can now assign a reference to a function or
subroutine to an event dynamically. For example, given a function named
MyFunction(), you can assign it to a button's ONCLICK event using:

Function MyFunction()
   ...
   'Function implementation code here
   ...
End Function
...
Set objCmdButton = document.all("cmdButton")
Set objCmdButton.onClick = GetRef("MyFunction")

This provides similar functionality to that existing in JavaScript and JScript, where
functions can be assigned as properties of an object dynamically.

On Error Goto 0 in VBScript
Although this technique was not documented previously, it does in fact work in
existing versions of VBScript (as those of you with a VB background and an inquisitive
mind will have already discovered). It is now documented, and can be used to 'turn off'
custom error handling in a page after an On Error Resume Next has been executed.
The result is that any subsequent errors will raise a browser-level or server-level error
and the appropriate dialog/response.

Other New Features
A couple of other features have been made available in IIS 5.0.



1: What is ASP?

34

Distributed Authoring and Versioning (DAV)
This standard, created by the Internet Engineering Task Force (IETF) and now in
version 1.0, allows authors in several locations to concurrently build and maintain Web
pages and other documents. It is designed to provide upload and download access, and
control versions so that the process can be properly managed. Internet Explorer
contains features that integrate with DAV in IIS 5.0. However, in the IETF standard,
and in the current release of IIS 5.0, the versioning capabilities are not yet implemented.

Referencing Type Libraries
In the past, it has been common practice to use a server-side include file to add
constants from a type library (such as scripting objects, ADO, or MSMQ) to an ASP
page. This is necessary, as ASP does not create a reference to the type library or
component DLL as does, for example, Visual Basic. In IIS 5.0, you no longer need to use
include files for constants. Instead, you can access the type library of a component
directly using a new HTML comment-style element, placed in the <HEAD> section of
the page:

<!-- METADATA TYPE="typelib" FILE="c:\WinNT\System32\scrrun.dll" -->

This makes all the constants in the specified file available within the current ASP page.
(Although this is slated as being new in IIS 5.0, it was working but undocumented in IIS
4.)

FTP Download Restarts
The FTP service now (at last, some would say) provides a restart facility for downloads.
If a file download stops part way through – perhaps because of a dropped connection at
the user end – it can be resumed from that point. This means that failed file downloads
do not require the client to download the entire file all over again.

HTTP Compression
IIS now automatically implements compression of the HTTP data stream for static and
dynamically generated files, and caches compressed static files as well. This gives faster
response and reduces network loading when communicating with suitably equipped
clients.

New versions of the scripting engines, JScript 5.5 and VBScript 5.5 are
currently available in beta. A description of the key new features of these can
be downloaded from our web site.



Summary

35

Summary
In this chapter, we've very briefly looked at many of the major topics that you need to
be aware of when working with ASP 3.0. We've purposely taken the point of view of
the experienced web developer, assuming that either you have previous experience of
ASP through using an earlier version, or at least you know how the Web works when
clients and servers interact.

By now, you should have a good overall view of what ASP 3.0 offers – both in terms of
the existing features in earlier versions, and the new features that are available in
version 3.0. If you feel that you don't fully understand the concepts of the ASP object
model, or the way that context is used to allow access to this object model from other
sources, don't worry. Providing you have a broad understanding of the topics we've
covered here, you will easily be able to follow the next chapter and the following
section, which cover it all in more detail.



1: What is ASP?

36


