
Oracle8 and Oracle8i

Wouldn't life be a lot easier if everyone used the same operating system, the same Internet browser
software and the same relational database? Unfortunately things aren't that simple, so we
need to be as flexible as possible. This book introduces all the main databases and data sources that
you, as an ASP developer, may come across. Here, we will cover one of the most important relational
databases – Oracle.

In this chapter we will cover the basics of configuring a web server to connect to a remote Oracle8 or
Oracle8i database, although many of the techniques apply equally well to previous versions of Oracle
7.x. We'll show you how to use the common ODBC Drivers and OLE DB Providers in conjunction
with ActiveX Data Objects (ADO) to manipulate data stored within an Oracle database from within
an ASP application.

We'll build upon each area by creating a collection of ASP scripts that will use the sample scott
database schema showing how to retrieve and update data in a flexible and more importantly,
scalable manner. We will finally cover the (unfortunately), advanced concept of retrieving recordsets
from an Oracle stored procedure. Don't worry though, it's relatively easy to use scalar INPUT and
OUTPUT parameters to return individual parameters from an Oracle stored procedure – which we'll also
be covering in this chapter.

All of the SQL and ASP code for this sample application can be downloaded from the
Wrox web site at http://www.wrox.com.

15



Chapter 15

474

A Brief History of Oracle
Way back in June 1970, Dr E F Codd published a paper entitled A Relational Model of Data for Large
Shared Data Banks. This relational model, sponsored by IBM, then came to be accepted as the definitive
model for relational database management systems – RDBMS. The language developed by IBM to
manipulate the data stored within Codd's model was originally called Structured English Query
Language, or SEQUEL, with the word 'English' later being dropped in favor Structured Query
Language – SQL.

In 1979 a company called Relational Software, Inc. released the first commercially available
implementation of SQL. Relational Software later came to be known as Oracle Corporation.

Oracle Version 8
You'll find versions of Oracle8 available for many of today's popular computing environments, in
particular Windows, UNIX and Linux. This is one of the reasons why it's so popular, and luckily for us
as developers, doesn't make that much of a difference which platform it is running on.

The original version of Oracle8 was designed to support applications in the up-and-coming network-
computing era, ranging from a small departmental application right up to a high-volume enterprise-wide
system. In order to provide this level of flexibility, Oracle8 comes in two different editions:

❑ Oracle8

❑ Oracle8 Enterprise Edition

Both editions actually share the same code base, but the difference is that the standard edition (referred
to simply as Oracle8) is aimed at smaller applications, whereas its big brother, the Enterprise Edition,
comes with a number of high-end features that allows it to support the thousands of users of larger
enterprise-wide applications. The Enterprise Edition provides greater support for very large databases
containing hundreds of terabytes of data, whilst the number of columns per table and maximum
database size, for both editions, has been increased compared to previous versions of Oracle.

In order to support large numbers of users, both the Oracle8 and Oracle8 Enterprise Edition servers
provide a method of connection pooling that temporarily drops and then re-uses a physical connection
for those users that are idle, in conjunction with its networking software Net8. With this type of
technology there is no reason why an Oracle server cannot support many thousands of concurrent users.

With that said, it's worth remembering that our ASP-based applications, if designed correctly, should
connect and disconnect from the Oracle database as soon as they have completed a certain task, rather
than hold onto a database connection for the life of the user's session. Don't forget that Microsoft
Transaction Server and OLE DB also offer connection-pooling techniques to save the valuable time
taken to initialize database connections.

Traditional client/server applications that maintain a user's connection, until the application has
closed, will more than likely utilize Oracle's own connection pooling rather than that of OLE DB
which pools connections based on the same username and password combination.

The actual edition of Oracle8 that we connect to again makes little practical difference to the front-end
applications that we develop, as we use the same query language and networking software to manipulate
the data.



Oracle8 and Oracle8i

475

Both editions of Oracle8 provide support for the emerging SQL-3 standard for object-type definition.
SQL-3 allows us to create object types that, for example, define a person's address that we could then
use directly in our database, and access through our programs.

For a full investigation into Oracle's object support, check out the Oracle TechNet at
http://technet.oracle.com.

Oracle Version 8i
Oracle8i is the latest incarnation of the Oracle8 data server. If you hadn't already guessed it,
the 'i' in Oracle8i refers to the Internet. Oracle Corporation bills Oracle8i as "the database for
Internet computing".

All of the above Oracle8 features apply just the same to the new Oracle8i, with the Oracle8i data server
also being available in two editions – the standard edition, Oracle8i, and the high-end version, Oracle8i
Enterprise Edition.

The major change to the Oracle8i Enterprise Edition is the inclusion of support for the Java Virtual
Machine allowing developers to execute Java code directly from within the database engine. Whereas
previously, the only way to procedurally manipulate Oracle data was through its PL/SQL language, you
can now use Java to do exactly the same job.

So are they doing away with PL/SQL? This does seem to be the general trend if you consider that
the next version of SQL Server (the one after version 2000) will allow stored procedures written in
any .Net language and that DB2 already provides support for Java stored procedures. SQL is here
for the foreseeable future, but maybe for the benefit of ODBC and OLE DB access.

Oracle8i includes the Internet File System, iFS, a Java application that brings the combination of an
integrated file system and database into one server to provide text searches and querying of files and
data stored within iFS.

Another new technology in Oracle8i is Oracle WebDB that allows dynamic web sites to be built and
deployed from within the Oracle database. WebDB provides an HTML interface so that non-
programmers can develop their own web-based database applications. It includes a lightweight HTTP
listener that can act as a web server and a PL/SQL interface to the database. As web developers,
we might want to discourage non-programmers from developing their own web sites; this is not just
because of our own job security, but also due to the fact that small in-house projects have a tendency
to grow into large projects that may not have been designed with scalability in mind through poor
programming techniques.

Oracle8i's new interMedia feature provides additional support for multimedia content such as image,
video, text, and audio. interMedia allows users to query data held within common document formats
such as HTML, Adobe Acrobat (PDF) and the Microsoft Office applications such as Word documents
and Excel spreadsheets, and provides support for the delivery of streaming media in conjunction with
common streaming servers such as Oracle Video Server and RealVideo.

Release 2 of Oracle8i (version 8.1.6) also brings native support for XML.

If you've used Oracle8 prior to Oracle8i, then you'll notice that the developer's tools such as the
Schema Manager, Oracle Installer and Net8 Assistant have had a radical interface makeover. I
personally find them slightly slower to use than their previous counterparts owing to the fact that most
are now written in Java, but they do appear more user friendly.



Chapter 15

476

Installing Oracle Client Components
In this section we will be installing the Oracle client components on an IIS-based web server to
enable our ASP scripts to communicate with an Oracle database server. Once the client programs
have been installed we will be using Oracle's configuration utilities to configure our web server to
connect to Oracle.

With the exception of cosmetics, there are very few differences between the Oracle8 and Oracle8i
installation programs, so we will be showing screen shots from the Oracle8i installation.

In order to access an Oracle database, a number of software components need to be installed on a client
computer. Oracle8 uses its networking component Net8 to provide client-server and server-server
connectivity for many common protocols and platforms.

In versions prior to Oracle8, the forerunner to Net8 was SQL*Net version 2 – you'll find lots of
documentation that still refers to SQL*Net. Net8 is backwardly compatible with SQL*Net version 2,
allowing Net8 to access both Oracle7 and Oracle8 databases. It is possible, however, to connect to an
Oracle8 database using SQL*Net but some of the new network features will not be available.

Once you've installed the Oracle client components, the Net8 Easy Config and Net8 Assistant
applications can be used to configure your Net8 settings. Both applications use a number of .ora
configuration files that you can, if you know what you're doing, edit yourself in Notepad. We'll go
through the installation of the client components before we go into the details of the applications.

The Oracle client components are supported on all 32-bit Windows platforms:
Windows 95, Windows 98, Windows NT 3.5 and NT 4 Server and Workstation, and
Windows 2000.

By running the familiar setup.exe file you will be presented with a screen welcoming you to the
Oracle Universal Installer, or Oracle Installer as Oracle8 calls it. After clicking Next your first choice is
to tell the Installer where to put the physical files that it installs. This location is known as the Oracle
Home setting:



Oracle8 and Oracle8i

477

This allows you to install multiple versions of the Oracle products onto the same machine without an
installation conflicting with any other installation. Oracle Home essentially defines the location of a
folder into which the software is installed. If you only plan to have one set of Oracle products installed
on the machine, which is very often the case, then choose DEFAULT_HOME for the Name. In my case, I
have a number of Oracle products installed, so I have given it a name of oracle8i_dev with the files
being located in the d:\oracle8i_dev folder.

Clicking the Next button takes you to the Available Products screen:

Here you must choose the actual product to install: the database server, client software, or
management infrastructure software. In many cases you will be connecting to an Oracle database
running on a different server to that of your web server, so you should select the second option,
Oracle8i Client. If your web server also happens to be your database server then you will need to select
the first option to install the actual database sever and, optionally, a starter database accessed via the
scott account. The Management Infrastructure option installs the client components along with
directory services components.

In my case, I am installing the Oracle client on a web server that will connect to Oracle on a remote
server, so I selected Oracle8i Client.

Once you've clicked Next, you will be asked about the Installation Type (the Oracle8 installation calls
this the Primary Function). The list of options shown is dependent upon the item selected from the
previous screen. If you had chosen to install the Oracle server then you will see a list of options, such as
whether to include the pre-configured starter scott database.



Chapter 15

478

In the case of the Oracle Client installation
you can specify the type of installation
required for the client components
depending upon the features that the client
machine needs:

If you need to perform DBA tasks such as creating and backing-up databases, and stopping the server
then choose the Administrator option. This will install all of the utilities required to administer an
Oracle server.

If the machine is used as your development server then it's a good idea to choose the Programmer
option to install a subset of the Administrator tools. However, you won't get utilities such as the
Enterprise Manager Console used to administer an Oracle server.

The Application User option should be selected if the machine is used as your web server. This will
only install the basic networking and client components and none of the admin or programming tools.

The last option, Custom, allows you to specify exactly which components should be installed.

You can decide which items should be installed on your machine, but some organizations do not
allow developers to perform traditional DBA functions such as stopping servers - for very good
reasons. You can always add or remove components using the Installer at a later date. Personally I'd
want everything that's available so I'd choose Administrator anytime!

After you've clicked Next (for the last
time) the Installer will show a summary
page confirming the options that you
have selected:



Oracle8 and Oracle8i

479

Now it's just a case of pressing the Install button to install all of the required programs. Once the
installation has been completed you can move onto configuring Net8, the client software, to connect to
your Oracle server.

Configuring Net8
As mentioned earlier, we need to install a layer of network software on our web server that allows us to
communicate with Oracle. By selecting the Client installation, the Oracle Installer will have installed
Net8, which we now have to configure.

Net8 supports standard network protocols, such as TCP/IP, to connect to Oracle8 servers through the
use of user-friendly aliases called service names. A service name is simply a name used to refer to an
Oracle server much as we use URLs in preference for hard-to-remember IP addresses.

You have a number of ways in which to store these lists of service names:

❑ Domain Name System (DNS)

❑ Local client configuration files

❑ Oracle Name Server

❑ Non-Oracle name server

Net8 uses Oracle Protocol Adaptors to map the following industry-standard network protocols into a
standard that it can recognize internally:

TCP/IP Widely-used Internet network protocol

SPX Another commonly used network protocol

Named Pipes Microsoft's networking protocol specific to PC-based LANs

Bequeath Used for local Windows 95 and 98 Personal Oracle8 installations

Logical Unit Type Part of IBM's peer-to-peer SNA network

Oracle8 comes with two utilities to configure Net8: Net8 Easy Config, to edit our list of service names,
and Net8 Assistant, an advanced utility that allows us to configure service names, network listeners,
Oracle Names Servers and local configuration files. Configuration using Net8 Assistant is primarily a
DBA role so we won't cover it here. We will be using the Net8 Easy Config application to configure
our client.

There are a number of ways to store the list of service names with the two most commonly used
methods being:

❑ Host Naming – Uses existing DNS-based or a centrally maintained HOSTS file for name
resolution. By simply using the host's network name, no client configuration is required.

❑ Local Naming – Uses a local configuration file, TNSNAMES.ORA, to resolve names.

Host Naming does not require any client configuration so we will take a look at Local Naming using
the Net8 Easy Config program. Net8 Easy Config edits a file called TNSNAMES.ORA in the
installation_folder\Net80\Admin folder, which can be edited manually using Notepad. In many
Oracle sites it is a common practice to simply copy the TNSNAMES.ORA file from the Oracle server
machine onto the client.



Chapter 15

480

TNS stands for Transparent Network Substrate (TNS). This is a non- proprietary low-level
interface that manages the opening and closing of sessions and the sending or receiving of requests.

The screens that make up the Oracle8 and Oracle8i Net8 Easy Config (Net8 Configuration Assistant in
Oracle8i) applications do differ somewhat so we'll work through both versions to configure connecting
to an Oracle8 and Oracle8i server.

If you are configuring an Oracle8 client then start the Oracle Net8 Easy Config and select Add New
Service. Our DBA has called the Oracle8 server Oracle8_Dev, so we'll type that name in – you'll have
to use the name of your own Oracle8 server. You may find that this is the name of the actual server,
provided that it is only running one instance of Oracle.

You may see a dialog box warning you that Net8 Easy Config has found a number of comments in
the configuration file TNSNAMES.ORA. It is generally safe to ignore this warning message.

In the case of our Oracle8i database, we have a server called Oracle8i_Dev so we'll use that for the
name. Before you can enter the Oracle8i service name, choose the Local Net Service Name
configuration option, click Next and then choose the Add item to add a new service name before
pressing Next again. Finally you must tell the Oracle8i Configuration Assistant that you want to access
an Oracle8i database. Clicking Next will take you to the Service Name screen:

The next step is to choose the type of network protocol used to communicate with the server. Typically
this will most likely be TCP/IP:



Oracle8 and Oracle8i

481

The host name is the resolved name used to refer to the server, which in our case is the same name
given to this service name – for ease. It is possible to install the Oracle server software to listen on a
different TCP/IP port number. By default, port number 1521 is used for Oracle installations, in much
the same way that port number 80 is used for HTTP requests. Unless your DBA has used a different
port number for additional security, select the default option:

There is one additional step to complete before testing an Oracle8 connection: you have to type in the
name of the database System Identifier, or SID to connect to. It is possible to run more than one
instance of Oracle on the same server by giving each instance a unique SID by which it can be
identified. If there is only one instance installed, then the Oracle server installation will default to
calling it ORCL, which your DBA can confirm:

If you do have a number of SIDs per server then it might be a good idea to use the SID as the name
for each service.

To test the new service name, you must enter a valid user name and password when using Oracle8.
Typically you can enter the scott/tiger username/password combination provided that the pre-
configured scott database has been installed. The Oracle8i version actually defaults to using
scott/tiger for you.



Chapter 15

482

If you've entered the correct host name and username/password then you should receive a message
saying that the connection test was successful. If you receive the error message ORA-12545: connect
failed because target host or object does not exist, you need to recheck the values of your host name,
port number and SID. You should also confirm that Oracle is actually running on the host specified.

The message ORA-01017: invalid username/password; logon denied is a lot more encouraging; it
means that you successfully communicated with the Oracle server, but you entered the wrong username
or password.

ORA-12545 and ORA-01017 are the common error messages that you are likely to come across, but
you may receive any of the following messages as well:

ORA-12154:

"TNS:could not resolve
service name"

Net8 could not find the service name specified in your
TNSNAMES.ORA file.

Make sure that the TNSNAMES.ORA file actually exists and that
you do not have multiple copies of the TNSNAMES.ORA file.

Make sure that you do not have duplicate copies of the
SQLNET.ORA file.

When using domain names ensure that your SQLNET.ORA file
contains a NAMES.DEFAULT_DOMAIN value.

ORA-12198:

"TNS:could not find
path to destination"

and

ORA-12203:

"TNS:unable to connect
to destination"

The client could not find the required database.

Is the service name spelled correctly?

Is TNSNAMES.ORA file in the correct folder?

Check that the service name ADDRESS parameter in the connect
descriptor of your TNSNAMES.ORA file is correct.

Get your DBA to check that the Oracle Listener on the remote
server has started and is running.

ORA-12224:

"TNS:no listener"

Could not connect because the listener is not running.

Does the destination address match one of the addresses used by
the listener.

Are you running the correct version of Net8 or SQL*Net?

Now that we've covered some of the differences between Oracle8 and Oracle8i, from
now on we'll refer to them both collectively as Oracle8. When we come across a
distinction between the two, we'll highlight it.

Much like SQL Server's user spaces, Oracle groups database objects, such as tables, indexes and
procedures, into what is called a schema. A schema maps to an actual login name. So, in the case of the
scott login name you will find a whole host of database objects under the scott account. scott is the
sample database schema created by the Oracle Installer when you first install the Oracle server.
Typically, a new default Oracle installation will have the following logins created:



Oracle8 and Oracle8i

483

Username Password Password

scott tiger Sample login.

sys change_on_ install Database administrator. Can perform all operations
such as stopping and starting the database.

system manager Operations user that can perform operational tasks
such as database backups.

We've gone through the process of installing Oracle's client networking software, Net8, then added
and tested a new Net8 service name to connect to an Oracle8 server called Oracle8_dev and an
Oracle8i server called Oracle8i_dev. Now it's time to look at how we connect to an Oracle
database through ASP.

Connecting to an Oracle Database
There are a number of ways in which we can connect to an Oracle database in order to manipulate its
data from within our ASP scripts. Which one you use rather depends what you are trying to achieve and
whether your organization prefers access through stored procedures, as the features supported by one
method may not be supported in another.

As well as Oracle Corporation, there are many third-party vendors such as Microsoft and Intersolv that
provide a number of products to communicate with Oracle. The following list represents the more
commonly used tools:

❑ Microsoft OLE DB Provider for Oracle

❑ Microsoft OLE DB Provider for ODBC

❑ Microsoft ODBC Driver for Oracle

❑ Oracle ODBC Driver

❑ Intersolv's Merant range of OLE DB providers and ODBC drivers

❑ Oracle Objects for OLE by Oracle

❑ Oracle Provider for OLE DB by Oracle

Microsoft's Universal Data Access (UDA) initiative contains a set of tools that we can use to
communicate with an Oracle database. With the integrated Microsoft Data Access Components
(MDAC) suite we can use ActiveX Data Objects (ADO) in conjunction with the Microsoft OLE DB
Provider For Oracle (MSDAORA.DLL) or the Microsoft ODBC Driver for Oracle (MSORCL32.DLL) to
communicate effectively with Oracle in a way that is reliable, scalable and offers high performance
when using ADO.

Microsoft also offers the universal OLE DB Provider for ODBC Drivers (MSDASQL.DLL) that allows any
ODBC data source to make use of the improvements in OLE DB. This, the default provider used by
ADO, was developed so that any existing ODBC-based data could fit into the UDA environment
efficiently and without losing an organization's ODBC investment.



Chapter 15

484

As if this didn't give us enough flexibility, we also have the universal Merant range of OLE DB
providers and ODBC drivers from Intersolv (www.merant.com/products/datadirect/oledb
/Connect/factsheet.asp), and Oracle Objects for OLE (OO4O).

We've discussed how Oracle8's Net8 networking component is used to communicate with an Oracle8
database, but we haven't mentioned the Oracle Call Interface (OCI) library. We won't go into much
detail except to say that this low-level layer exposes certain procedures that the OLE DB providers and
ODBC drivers call in order to communicate with the database, in much the same way as DBLib for
SQL Server databases.

After that brief overview, it is now time to show you how to connect to an Oracle8 database using the
more popular technologies so that you can see the relative pros and cons of each in terms of feature
support, performance, and ease.

There are bound to be times when you need the ability to fetch recordsets from an
Oracle stored procedure with ADO. At the time of writing you have no choice but to
use the ODBC driver for Oracle or Oracle's Oracle Provider for OLE DB, both of
which will be covered later.

OLE DB Provider for Oracle
The OLE DB Provider for Oracle supports most of the Oracle8 data types:

Data Type Supported Data Type Supported

BFILE LONG RAW Yes

BLOB NCHAR

CHAR Yes NCLOB

CLOB NUMBER Yes

DATE Yes NVARCHAR2

FLOAT Yes RAW Yes

INTEGER Yes VARCHAR2 Yes

LONG Yes MLSLABEL

This table shows that many of the standard data types are supported but those such as the LOB (Large
Object) and object-based extensions are not supported.

The provider is a native provider, in that it accesses the Oracle's API directly rather than through
ODBC. This provides us with generally the best performance when compared to other methods of
connecting to Oracle, but does mean that some functionality is not available.

In order to use the provider, you must set its name in the ConnectionString property of the ADO
Connection object or as the ConnectionString argument to the Open method. As with any
provider for ADO, unpredictable results can occur if you specify the name of the provider in more than
one place.



Oracle8 and Oracle8i

485

Let's start by connecting to the Oracle database using the scott username to execute two simple built-
in Oracle functions to retrieve the system date, sysdate, and current username, user:

Create a new ASP script called GetDate.asp:

<% Option Explicit %>
<HTML>
<HEAD><TITLE>Oracle Data Access</TITLE></HEAD>
<BODY>
<CENTER>
   <H2>
      Oracle Data Access<BR>
      Using 'OLE DB Provider for Oracle'<BR>
      SysDate and User Name Demo<BR>
   </H2>
</CENTER>
<%
Dim objConnection
Dim objRecordset

Set objConnection = Server.CreateObject("ADODB.Connection")
With objConnection
   .ConnectionString = "Provider=MSDAORA;Data Source=Oracle8_dev;" & _
                       "User ID=scott; Password=tiger;"
   .Open
   Response.Write "ADO Provider=" & .Provider & "<BR>"

   Set objRecordset = .Execute("SELECT sysdate, user FROM dual")
End With

We use the Connection object's ConnectionString property to tell ADO how to connect to our
Oracle database before calling the Open command to attempt to connect to the database. Don't forget
that the Data Source property, Oracle8_dev, is the service name that we created earlier, rather than
the actual machine name – but in my case, both are actually the same value.



Chapter 15

486

The Provider section tells ADO to use the OLE DB Provider for Oracle. We can use either
the class name of the provider, in this case MSDAORA, or the full provider name: 'OLE DB
Provider for Oracle'. As we want to use the scott account, we need to set the User ID
and Password accordingly.

Our Oracle8 server is located on a server called Oracle8_dev. You'll have to change this to reflect
your own Oracle database server.

If you've not used the With...End With statement, it serves as a way to call multiple methods on a
single object without having to refer to the name explicitly every time. It makes your code easier to read
and actually runs slightly faster as the ASP processor doesn't have to do extra processing to establish the
address of the objConnection object.

By calling the Open method, we should get a connection to the Oracle database. By way of a
confirmation, we write out the name of the Provider property. This shows us the name as defined in
the Registry along with any version number if there are multiple versions installed on the server.

The Execute method returns back a Recordset representing the records that were fetched from the
database, in this case a single record with a column containing the current system date and the current
user name. The argument passed to Execute is the command that we want Oracle to run for us.

Notice the word dual in our SELECT statement? Oracle does not allow you to execute a SELECT
statement without an accompanying FROM clause; dual is a logical pseudo-table, available to all
accounts, provided for that purpose. It is not a physical table that you can alter.

Response.Write "System Date=" & objRecordset.Fields("sysdate") & "<BR>" & _
               "User="        & objRecordset("user")

Set objConnection = Nothing
Set objRecordset = Nothing
%>
</BODY>
</HTML>

We finish off by reading the Fields collection of our objRecordset object to get the value for the
sysdate and user functions. In the case of the user field we've left out the .Fields statement as this
is the Recordset object's default property, though you can make your code run faster if you use it.

There's no need to navigate through the objRecordset, as there will only be one record returned.
With any objects that we create in our scripts, it's always a good idea to shut them down explicitly as
soon as possible using the Set ... = Nothing statement in order to free up server resources.

As we mentioned earlier, if you received the Oracle error message ORA-12545:
connect failed because target host or object does not exist then you need to
recheck the values of your host name, port number and SID that were entered when
your created the new service name using Net8 Easy Config.

That was a relatively easy example, so let's have a look at a more complex statement in which we return
a number of records. The scott schema comes with four sample tables that you can look at yourself.
The tables opposite represent an employee's bonus and salary tracking system:



Oracle8 and Oracle8i

487

This isn't the best schema that Oracle could have used as their pre-configured sample database. The
SALGRADE and BONUS tables are not referenced by any other tables and contain no primary keys.

Table Name Purpose

DEPT Stores a list of department names

SALGRADE Stores a list of salary grades

EMP Stores a list of employees

BONUS Stores a list of employee bonuses

Our example ASP script will be using the DEPT and EMP tables to show a list of all employees sorted by
their name (later on we'll be using them in our sample application):



Chapter 15

488

The code used to produce the previous screenshot looks like this:

<% Option Explicit %>
<HTML>
<HEAD><TITLE>Oracle Data Access</TITLE></HEAD>
<BODY>
<CENTER>
   <H2>
      Oracle Data Access<BR>
      Using 'OLE DB Provider for Oracle'<BR>
      Employee List Demo<BR>
   </H2>
</CENTER>
<%
Dim objConnection
Dim objRecordset
Dim varSQL

Set objConnection = Server.CreateObject("ADODB.Connection")
With objConnection
   .ConnectionString = "Provider=MSDAORA; Data Source=Oracle8_dev; " & _
                        "User ID=scott; Password=tiger;"
   .Open
   Response.Write "ADO Provider=" & .Provider & "<P>"

We start off as before by defining two variables for our Connection and Recordset objects and then
connect to the database using the scott/tiger combination. We've added a new variable, varSQL, to
hold a nicely formatted SQL statement:

   varSQL = "SELECT emp.empno, emp.ename, emp.job, emp.hiredate," & _
            "       emp.sal, emp.comm, dept.dname, dept.loc" & _
            " FROM emp, dept" & _
            " WHERE emp.deptno = dept.deptno" & _
            " ORDER BY emp.ename"

   Set objRecordset = .Execute(varSQL)
End With

The SQL statement joins the employee table, EMP, to the department, DEPT, to return a list of
employees and their departments. Again we use the Execute command to return back a Recordset
of data:

Response.Write "<TABLE BORDER=1><TR>" & _
               "   <TD>Number</TD>" & _
               "   <TD>Employee</TD>" & _
               "   <TD>Job</TD>" & _
               "   <TD>Hire Date</TD>" & _
               "   <TD>Salary</TD>" & _
               "   <TD>Commission</TD>" & _
               "   <TD>Department</TD>" & _
               "   <TD>Location</TD>" & _
               "</TR>"



Oracle8 and Oracle8i

489

We use Response.Write to write out the start of our table of results:

Do While Not objRecordset.EOF

   Response.Write "<TR>" & _
                  "   <TD>" & objRecordset("empno")    & "</TD>" & _
                  "   <TD>" & objRecordset("ename")    & "</TD>" & _
                  "   <TD>" & objRecordset("job")      & "</TD>" & _
                  "   <TD>" & objRecordset("hiredate") & "</TD>" & _
                  "   <TD>" & objRecordset("sal")      & "</TD>" & _
                  "   <TD>" & objRecordset("comm")     & "&nbsp;</TD>" & _
                  "   <TD>" & objRecordset("dname")    & "</TD>" & _
                  "   <TD>" & objRecordset("loc")      & "</TD>" & _
                  "</TR>"

   objRecordset.MoveNext
Loop
Response.Write "</TABLE>"

Now it's just a case of writing out each record by retrieving the value for each column from the Fields
collection of our Recordset object objRecordset and moving to the next record using the
MoveNext method. We loop through using a Do While...Loop that will stop as soon as it gets to the
end of the Recordset.

Some of the records in the comm column contain a null value, so we add the HTML non-breaking space
tag (&nbsp;) to ensure that the browser draws the cell border correctly.

Set objConnection = Nothing
Set objRecordset = Nothing
%>
</BODY>
</HTML>

As with our previous example, it's a good idea to explicitly close our objConnection and
objRecordset objects as soon as we've finished with them.

We've now managed to connect to an Oracle8 database using the OLE DB Provider for Oracle to
retrieve a single record of the current system date and username and a full list of employees in the
scott database's emp table. It is suggested that the OLE DB Provider for Oracle be used for the
majority of Oracle data access as it executes faster and supports Microsoft's new direction in data access
– OLE DB.

Microsoft ODBC Driver for Oracle
The Microsoft ODBC Driver for Oracle supports the same set of Oracle8 data types as the OLE DB
Provider for Oracle. When using this driver with ADO, we are actually using the OLE DB Provider for
ODBC Drivers (MSDASQL), which in turn uses the Microsoft ODBC for Oracle Driver.

Microsoft released the OLE DB Provider for ODBC (MSDASQL) so that all existing ODBC-based
applications could use the new features found in OLE DB through ADO. When connecting to any data
source using ADO, this is the default provider that is used.



Chapter 15

490

ODBC connection strings use the older DRIVER=, DSN=, UID=, PWD= and SERVER= (optionally in the
place of DSN=) parameters to connect to a data source. Don't forget that there must be a valid Data
Source Name, DSN, registered through the ODBC Data Source Administrator in the Administration
Tools (or Control Panel) if you are going to use the DSN parameter.

Each time you connect to a database using a DSN, ODBC must look through the Windows Registry
in order to retrieve connection details for your DSN. There may be some performance improvements
in your application if you use DSN-less connections, as the Windows Registry is notoriously slow to
access. If you do need to use DSNs, then remember to use System DSNs rather than File DSNs as
anonymous users, which your server is more than likely to use, have access to them.

We are going to create a simple ASP script that uses some of the principles we used with the OLE DB
Provider for Oracle to show a list of departments from the scott database's dept table.

The only real difference to this code is the connection string used, so we'll just show that line of code:

.ConnectionString = "Provider=MSDASQL;" & _
                    "DRIVER={Microsoft ODBC for Oracle}; " & _
                    "SERVER=Oracle8_dev; UID=scott; PWD=tiger;"

We make use of the DRIVER property to tell MSDASQL to use the Microsoft ODBC Driver for Oracle,
SERVER points to our database server, Oracle8_dev, and we use UID and PWD rather than the User ID
and Password combination.

Notice that we didn't specify a DSN so we don't have to create one, and although it's not actually
necessary in this case, we've specified the name of the Provider to use.



Oracle8 and Oracle8i

491

Oracle Objects for OLE (OO4O)
Oracle provides us with its own native client software that sits above the Oracle Call Interface, as
mentioned earlier, allowing us to communicate with an Oracle database using a COM/OLE component.

Oracle Objects for OLE, or OO4O as it is usually abbreviated to, allows us to execute SQL and
PL/SQL statements in a native "pass-through" format. This means we can make use of all Oracle data
types as well as additional features, such as bind variables.

Bind variables are an efficient way to execute the same SQL statement with differing parameters
without Oracle having to re-parse the statement each time. Unfortunately, it won't make that much
of a performance difference to our web page, as we will only execute the statement twice and then
close our database connection. However, this feature is ideal for client/server applications that maintain
the database connection until the application is closed. We will be discussing bind variables in the
following examples.

Unfortunately, by using OO4O we'll have to forfeit the usual methods found in ADO. However, OO4O
does implement the same, or very similar methods, so the learning curve is not that steep.

Version 2.3 of OO4O,which shipped with Oracle8, has the following object model:

OraParameterArray

OraClient

OraSession

OraConnection

OraParameter

OraDynaset

OraField

OraSQLstmt

OraDatabase



Chapter 15

492

You'll find that the later version, 8.1, as shipped with Oracle8i, has a similar model with a number of
extra objects:

OraParameterArray

OraSession

OraServer

OraDatabase

OraParameters

OraDynaset

OraMetaData

OraAQ

OraParameter

OraField

OraMDAttribute

OraAQMsg

The table gives a brief description of each object:

Name OO4O
Version

Description

OraSession 2.3
8.1

This is the first top-level object needed before we connect to
an Oracle database.

OraServer 8.1 Represents a physical connection to an Oracle database
server instance. The OpenDatabase function can be used to
create client sessions by returning an OraDatabase object.

OraConnection 2.3 Returns various pieces of user information about the current
OraSession object. It can be shared by many
OraDatabase objects, but each OraDatabase must exist in
the same OraSession object.



Oracle8 and Oracle8i

493

Name OO4O
Version

Description

OraDatabase 2.3
8.1

Represents a single login to an Oracle database. Similar to
the ADO Connection object. OraDatabase objects are
returned by the OraSession.OpenDatabase function.

OraDynaset 2.3
8.1

Similar to an ADO Recordset object. Represents the results
retrieved by a call to the OraDatabase.CreateDynaset
function.

OraField 2.3
8.1

Represents a column of data within an OraDynaset object.
Similar to the ADO Field object of an ADO Recordset.

OraClient 2.3 Automatically created by OO4O as needed. Maintains a list
of all active OraSession objects currently running on the
workstation.

OraParameter 2.3
8.1

Represents a bind variable for a SQL statement or PL/SQL
block to be executed using the OraDynaset object. Similar
to the Parameter object in an ADO Command object.

OraParamArray 2.3
8.1

Allows arrays of parameters to be set for the
OraDatabase.Parameters function.

OraSQLStmt 2.3
8.1

Represents a single SQL statement. Typically used with SQL
statements that include bind variables to improve
performance as Oracle does not have to parse the statement
each time it is executed. Can be thought of as conceptually
similar to the ADO Command object.

OraMetaData 8.1 Returns meta data to describe a particular schema such as
column names. Similar to the SQL Server DMO object
library. See the meta data example below.

OraAQ 8.1 The CreateAQ method of the OraDatabase returns an
OraAQ object. This provides access to Oracle's Advanced
Queuing message system that allows messages to be passed
between applications, much like MSMQ.

We are going to create a sample ASP script that executes a SQL statement to return a list of employees
for a specific department number using bind variables. This example, which is compatible with both the
2.3 and 8.1 versions of OO4O, will use OraSession, OraDatabase, OraDynaset and OraFields
objects, as they are the most commonly used objects in OO4O.

Using Bind Variables
Our script contains simple VBScript function, CreateEmployeeTable, declared at the bottom of the
script, to handle the refreshing of the Parameters collection and writing out of the HTML results table
each time.



Chapter 15

494

<% Option Explicit %>
<HTML>
<HEAD><TITLE>Oracle Data Access</TITLE>
<BODY>
<CENTER>
   <H2>
      Oracle Data Access<BR>
      Using 'OO4O'<BR>
      Employee Bind Variable Demo<BR>
   </H2>
</CENTER>
<%
Const cAccountingDeptCode = 10
Const cResearchDeptCode = 20

Dim varOraSession
Dim varOraDatabase
Dim varOraDynaset
Dim varSQL



Oracle8 and Oracle8i

495

We've made use of two constants to store the department code for the Accounting and Research
departments. These are passed into our objDatabase.Parameters object for each department.

Each of the remaining variables defined stores a reference to the OraSession, OraDatabase, and
OraDynaset objects respectively. Again we use a variable called varSQL to store our nicely formatted
SQL statement:

Set varOraSession = Server.CreateObject("OracleInProcServer.XOraSession")
Set varOraDatabase = varOraSession.OpenDatabase("Oracle8_dev", _
                                                "scott/tiger", 0)

The only object that we have to create ourselves explicitly is the OraSession object as all other objects
are created from other existing objects. We use the familiar Server.CreateObject to create an
instance of the OO4O component whose internal ProgID is OracleInProcServer.XOraSession.

The OpenDatabase function returns an OraDatabase object, which in our case is the scott account
on the Oracle8_dev service. OpenDatabase is called in the following way:

Set oraDatabase=oraSession.OpenDatabase(db_name, connectstring, options)

Where db_name is the service name to connect to, connectstring is the standard Oracle connection
format of "username/password", and options is a collection of bit flags to indicate the mode in
which the database should be opened. In our case we are passing in 0 to indicate that we want the
database to be opened in the default mode, which means that any fields that we do not explicitly set a
value for using the AddNew or Edit methods will be set to Null (this will incidentally override any
server column default values!), rows will be locked as soon as the Edit method is called, and that non-
blocking SQL functionality will not be used. A non-blocking call provides the same concept as an
asynchronous ADO call in which the calling application does not have to wait until the server completes
a request before continuing.

Some client installations may cause the Oracle error "Credential Retrieval Failed"
whenever you try to connect. If this is the case then your client installation is trying to
use a different form of client authentication to that of the server. Client authentication
should be set to none, rather than native (NTS), so edit your sqlnet.ora file, located
in the same folder as tnsnames.ora, and replace the line

SQLNET.AUTHENTICATION_SERVICES=(NTS)

with

SQLNET.AUTHENTICATION_SERVICES=(NONE).

Response.Write "OO4O Version:" & varOraSession.OIPVersionNumber & "<BR>" &_
               "Connect: " & varOraDatabase.connect & "<BR>" & _
               "DatabaseName: " & varOraDatabase.DatabaseName & "<BR>" & _
               "Oracle Version: " & varOraDatabase.RDBMSVersion & "<P>"



Chapter 15

496

Just for our benefit we write out some information about the version of OO4O and the Oracle server
that we are connecting to:

varSQL = "SELECT empno, ename, job, hiredate," & _
         "       sal, comm" & _
         " FROM emp" & _
         " WHERE deptno = :deptnoparam" & _
         " ORDER BY ename"

varSQL stores the SQL statement to execute using an Oracle bind variable, :deptnoparam. As we
hinted at above, using bind variables can improve the performance of data access when you have the
same SQL statement to execute, but need to alter a parameter. Each time Oracle executes a statement it
has to go through the statement to understand how it should be executed. By using the bind variable, we
can get Oracle to parse it only once. Remember, though, that this only exists for the life of your
OraDatabase object – which should only be kept around for the life of the script and not in an ASP
Session variable.

varOraDatabase.Parameters.Add "deptnoparam", 0, 1

Before we can tell Oracle about the bind variable we need to add it to the OraDatabase object's
Parameters collection using the Add command, which is called in this way:

OraParameters.Add Name, Value, IOType

The Name argument is a string that represents the name of the parameter to add, and it must match that
of the bind variable defined in the SQL statement, Value is a variant, IOType indicates the direction
of this parameter:

Enumerator Value Description

ORAPARM_INPUT 1 Use as an input variable only

ORAPARM_OUTPUT 2 Use as output variable only

ORAPARM_BOTH 3 For variables that are both input and output

IOType is much like the adDirection enumerator used in the ADO Command object's Parameters
collection to set the direction of SQL parameters.

In our example we passed in a value of 0 as a default because we don't actually have a value to use and
a 1 to indicate that is for input use only.

Set varOraDynaset = varOraDatabase.CreateDynaset(varSQL, &H4)

Now it's just a case of calling the OraDatabase.CreateDynaset to retrieve an OraDynaset object.
CreateDynaset is called in this way:

Set oradynaset = oradatabase.CreateDynaset(sql_statement, options)

Where sql_statement is the SQL to execute and options contains a bit flag of settings to define how
the OraDynaset object behaves, such as whether it is updateable, or to cache data on the client. In our
case we're passing in the hex value &H4 to indicate that it should be opened in read-only mode as we
only want to display some data.



Oracle8 and Oracle8i

497

Behind the scenes, Oracle parses the statement ready for execution. It doesn't actually fetch any data
until we set the deptnoparam parameter's Value property in OraDatabase.Parameters collection
and ask OO4O to refresh the dynaset using OraDynaset.Refresh:

Response.Write "<B>Accounting Department Employees:</B><BR>"
CreateEmployeeTable cAccountingDeptCode

Response.Write "<BR><B>Research Department Employees:</B><BR>"
CreateEmployeeTable cResearchDeptCode

Here we can see our VBScript procedure CreateEmployeeTable being called to set the value for each
of the department number parameters to create a nicely formatted table, as defined below:

Set varOraDatabase = Nothing
Set varOraDynaset = Nothing
Set varOraSession = Nothing

As always, we close down all of our objects as soon as possible in order to save server resources. Now to
the CreateEmployeeTable function:

Sub CreateEmployeeTable(ByVal varDeptCode)

   varOraDatabase.Parameters("deptnoparam").Value = varDeptCode
   varOraDynaset.Refresh

CreateEmployeeTable is passed the required department code, which it binds to the original SQL
statement's bind variable deptnoparam. Each time you specify a new value for a bind variable, you
must call the Refresh method to fetch the new data.

Calling Refresh cancels all record edit operations that may have been pending through the Edit and
AddNew methods, executes the SQL statement, and then moves to the first row of the resulting dynaset.

   Response.Write "<TABLE BORDER=1><TR>" & _
                  "  <TD>Number</TD>" & _
                  "  <TD>Employee</TD>" & _
                  "  <TD>Job</TD>" & _
                  "  <TD>Hire Date</TD>" & _
                  "  <TD>Salary</TD>" & _
                  "  <TD>Commission</TD>" & _
                  "</TR>"

   Do While Not varOraDynaset.EOF

So now we create the TABLE tag and loop through the records until we come to the end of file, EOF,
exactly as we would with the ADO Recordset.EOF property.

      Response.Write "<TR>" & _
                     "   <TD>" & varOraDynaset.Fields("empno").Value & _
                     "</TD>" & _
                     "   <TD>" & varOraDynaset.Fields("ename").Value & _
                     "</TD>" & _



Chapter 15

498

                     "   <TD>" & varOraDynaset.Fields("job").Value & _
                     "</TD>" & _
                     "   <TD>" & varOraDynaset.Fields("hiredate").Value & _
                     "</TD>" & _
                     "   <TD>" & varOraDynaset.Fields("sal").Value & _
                     "</TD>" & _
                     "   <TD>" & varOraDynaset.Fields("comm").Value & _
                     "&nbsp;</TD>" & _
                     "</TR>"

The Fields collection returns a named list of columns for the current record, which we use to create a
new table row for each record. We haven't shown it, but as with an ADO Recordset object, the
Fields property is the default value, and for a Field object, the Value is the default so
varOraDynaset.Fields("sal").Value is equal to varOraDynaset("sal"). For better
performance you should use the latter.

      varOraDynaset.MoveNext
   Loop
   Response.Write "</TABLE>"
End Sub
%>
</BODY>
</HTML>

As with ADO, the MoveNext method moves to the next record.

Getting Meta Data
For our final look at OO4O we will use the OraMetaData object found in version 8.1 to retrieve a list
of attributes for the emp table within the scott schema. As we said earlier, OraMetaData can retrieve
all sorts of information about a schema, by calling the OraDatabase object's
Describe("schema_name") function to return an OraMetaData object. The OraMetaData object
returns a collection of OraMDAttribute objects that actually describe the data found and contains the
following methods and properties:

Name Description

Count Returns the number of OraMDAttribute objects contained in the
collection.

Type The type of object described, for example ORAMD_TABLE which
enumerates to the value 1 for an Oracle table.

Attribute(pos) Returns an OraMDAttribute object at the specified position. This can
be the 0 based index or a string name, such as "ColumnList".

To make things slightly complicated the OraMDAttribute object has a property called IsMDObject
that returns True if the Value property contains yet another OraMetaData object. This allows you to
recursively search through a hierarchy of OraMetaData objects. If it returns False then Value
contains a string representation of the item.



Oracle8 and Oracle8i

499

The following code produces the screenshot shown above. We start off with the usual header:

<%Option Explicit%>
<HTML>
<HEAD><TITLE>Oracle Data Access</TITLE>
</HEAD>
<BODY>
<CENTER>
   <H2>
      Oracle MetaData Example<BR>
      Using 'OO4O'<BR>
   </H2>
</CENTER>

The cTableName constant contains the name of the table that we want to describe. As usual we are
using the OraSession object to hold a reference to OO4O and OraDatabase to connect to our
Oracle8i server:

<%
Const cTableName = "emp"

Dim objOraSession
Dim objOraDatabase
Dim objOraMetaData
Dim objOraMDAttribute
Dim objColumnList
Dim objiColCount
Dim objColumnDetails



Chapter 15

500

objOraMetaData is used to store our top-level OraMetaData object returned by the Describe
function and objOraMDAttribute stores the item name "ColumnList" from the objOraMetaData
object, which represents the list of columns in the emp table. The actual Value for
objOraMDAttribute is stored in objColumnList.

Set objOraSession = CreateObject("OracleInProcServer.XOraSession")
Set objOraDatabase = objOraSession.OpenDatabase("Oracle8i_dev", _
                                                "scott/tiger", 0)
Set objOraMetaData = objOraDatabase.Describe(cTableName)
Set objOraMDAttribute = objOraMetaData("ColumnList")

We connect to the Oracle8i_dev service and call the OraDatabase object's Describe function to
return our first OraMetaData object to objOraMetaData for the emp table. objOraMetaData will
contain a collection of OraMDAttribute items, so we pass in ColumnList to retrieve the list of
column names.

If objOraMDAttribute.IsMDObject Then

   Response.Write "Column definition for table <B>" & cTableName & _
                    "</B><P>" & _
                    "<TABLE BORDER=1><TR>" & _
                    "<TD>Name</TD><TD>Type</TD><TD>Size</TD>" & _
                    "<TD>IsNull</TD><TD>Precision</TD>" & _
                    "<TD>Scale</TD>" & _
                    "</TR>"

   Set objColumnList = objOraMDAttribute.Value

Even though it's not strictly necessary with this example, we check the IsMDObject property to see if
the Value property contains another objMetaData object. In our case, it will always be True, since we
asked for the list of column names, which is another objMetaData object.

IsMDObject is a property so if you try to call it as a function by adding () to the end
you'll get runtime error 'Object doesn't support this property or method'.

To make the code easier to read and run quicker we transfer the Value property into a new variable
objColumnList:

   For iColCount = 0 To objColumnList.Count - 1
      Set objColumnDetails = objColumnList(iColCount).Value
      Response.Write  "<TR>" & _
         "<TD>" & objColumnDetails("Name")      & "</TD>" & _
         "<TD>" & objColumnDetails("DataType")  & "</TD>" & _
         "<TD>" & objColumnDetails("DataSize")  & "</TD>" & _
         "<TD>" & objColumnDetails("IsNull")    & "</TD>" & _
         "<TD>" & objColumnDetails("Precision") & "</TD>" & _
         "<TD>" & objColumnDetails("Scale")     & "</TD>" & _
       "</TR>"
   Next
   Response.Write "</TABLE>"
End If



Oracle8 and Oracle8i

501

Now it's just a case of moving through the zero-based collection of column details and writing out the
value for each item. We finish off by shutting down our objects:

Set objColumnDetails = Nothing
Set objColumnList = Nothing
Set objOraMDAttribute = Nothing
Set objOraMetaData = Nothing
Set objOraDatabase = Nothing
Set objOraSession = Nothing
%>
</BODY>
</HTML>

That covers our introduction into the common objects you'll come across in OO4O. OO4O offers a
rather flexible approach to connecting to an Oracle database and also provides us with additional
PL/SQL functionality not available through ADO, such as the use of input arrays for stored procedures.

So, which one should you use in your ASP applications? Unfortunately, there is no simple answer. Each
method claims to be faster than the next whilst providing support for additional functionality. It really
does pay to try each of the methods in your own environment before committing to any particular one.

An Overview of PL/SQL
We've shown you a number of techniques available to connect to an Oracle database. Now we shall
provide a quick overview of Oracle's own procedural extensions to SQL.

This section doesn't aim to be a PL/SQL bible. Instead, we'll cover some of the main differences
between PL/SQL and standard ANSI SQL.

The "PL" in PL/SQL is short for Procedural Language. It is an extension to SQL that allows you to
create PL/SQL programs that contain standard programming features such as error handling, flow-of-
control structures, and variables, all allowing you to manipulate Oracle data. By itself, SQL does not
support these concepts.

Block Structure
A PL/SQL program consists of any number of blocks or sections of code. In our ASP scripts we can
create any number of chunks of code to execute on the server using the <%...%> tags. This is
similar to PL/SQL, where a set of statements can be grouped logically together as part of a larger
set of instructions:

DECLARE TotalSal NUMBER(5);
BEGIN
   SELECT SUM(Sal) INTO TotalSal
     FROM emp
    WHERE ename LIKE 'S%';

   dbms_output.put_line('totalSalary=' || TotalSal );
   IF TotalSal < 10000 THEN
      UPDATE emp SET
        Sal = Sal * 1.1
      WHERE ename LIKE 'S%';
   END IF;



Chapter 15

502

   COMMIT;

  EXCEPTION
    WHEN NO_DATA_FOUND THEN
      dbms_output.put_line('No records found.');
    WHEN OTHERS THEN
      dbms_output.put_line(SQLERRM);
END;

A PL/SQL block has three distinct sections:

❑ Declarations

❑ Statements

❑ Handlers

They are defined in the following way:

[DECLARE declarations]
BEGIN
   statements
   [EXCEPTION handlers]
END;

The declarations section contains any variables or constants that are going to be used within the
statements section. You can have any number of statements to execute, but if an error occurs in
any of them, processing will stop and execution will move to the exception section for trapping, if
any are defined.

In above example we declare TotalSal as a variable in the declarations section:

DECLARE TotalSal NUMBER(5);

All of the remaining code up to the EXCEPTION line forms the statements section, followed by two
exception handlers: NO_DATA_FOUND and OTHERS.

When you declare an exception handler you must tell Oracle which one of the in-built exceptions you
want to trap, such as ZERO_DIVIDE. In our case we've trapped NO_DATA_FOUND, which is raised when
an empty result set is retrieved, and OTHERS, which is a catch-all handler that will trap any other
exceptions that you have not explicitly named. You can have any number of exception handlers and
you can also set up your own exception types, but that is beyond the scope of this chapter.

Once an exception has been trapped you cannot issue the equivalent to a VBScript RESUME NEXT as the
PL/SQL program will exit at the last line in the exception handler. This is somewhat different to the
operation of SQL Server's T-SQL in which you can check the value of @@Error after any statement,
provided that the error was of a trappable nature.

The dbms_output.put_line('No records found.'); statement allows us to briefly mention
PL/SQL debugging. dbms_output is a built-in Oracle Package (a package is a way to group together
collections of stored procedures) that can be used to send messages to the console. In order to actually
see these messages you must execute the SET SERVEROUTPUT ON; statement from within the SQL*Plus
SQL editor. Each call to dbms_output.put_line will write out the string message passed to it.



Oracle8 and Oracle8i

503

Oracle uses the / character to mark the end of a block of SQL to execute within
SQL*Plus.

Variable Declaration
At the start of a PL/SQL block you must define any variables that are to be used, after the DECLARE
statement. You can use any of the standard Oracle data-types such as NUMBER, VARCHAR2 or any
PL/SQL data-type, such as BOOLEAN. It is just a case of defining the variable name followed by the data-
type and using a semi-colon between multiple declarations:

DECLARE TotalBonus  NUMBER(6);
        BonusPaid   BOOLEAN;

For a full list of Oracle data-types check out
http://technet.us.oracle.com/doc/server.804/a58227/ch6.htm#649

Assigning Values to Variables
In ASP we use the = statement to assign a value to one of our variables. In PL/SQL it is slightly
different, in that we must use :=.

SalePrice := (ProductPrice / 100)  * SalesTax;

If we are returning a value from a database table or system function, then we use the INTO statement:

SELECT SUM(Quantity) INTO ItemsOrdered FROM OrderBasket;

Conditional Flow of Control
We use the If...Then...Else construct to control the execution flow of our ASP scripts. PL/SQL
also supports this construct in a similar format:

IF SaleCount > 10 AND SaleCount < 20 THEN
   UPDATE emp SET sal = sal * 0.3;
ELSIF SaleCount = 5 THEN
   UPDATE emp SET sal = sal * 0.2;
ELSE
   UPDATE emp SET sal = sal * 0.1;
END IF;

Surprisingly, PL/SQL doesn't yet provide support for the CASE statement.

Looping Flow Control
To loop through a section of code, PL/SQL supports a number of LOOP statements. The first is similar
to the VBScript For...Next statement:

FOR countervar IN start..end LOOP
   statements to execute
END LOOP;



Chapter 15

504

Where countervar is the counter variable, start is the initial starting value and end is the final
value. For example:

FOR intCounter IN 1..5 LOOP
   INSERT INTO OrderLine(ID)
      VALUES(OrderLineID.NEXTVAL);
END LOOP;

The equivalent loop in VBScript would be:

FOR intCounter = 1 To 5
   Response.Write "Value=" & intCounter
NEXT

The WHILE...LOOP allows us to execute a section of code until a certain condition is true, just as we do
with the Do...Loop structure in ASP:

WHILE TotalBonus < 10000 LOOP
   SELECT Bonus, EmpID INTO EmpBonus, MyEmpID
      FROM emp
      WHERE EmpID <> MyEmpID;
   Totalbonus := TotalBonus + Bonus;
   RecordCount := RecordCount + 1;
END LOOP;

Of course, there's a lot more to PL/SQL than that. PL/SQL is like any programming language with
many constructs, statements and functions, but these are the typical building blocks that you will come
across in any PL/SQL program.

Oracle Packages
We covered stored procedures a few chapters ago, so now we'll take a quick look at Oracle Packages.
An Oracle package serves as a way to group procedures and functions into common groups typically
based upon their functionality. A package has two sections: the specification that contains a definition of
any objects that can be referenced outside of the package, and a body that contains the implementation
of the objects. The specification section must be declared first:

PACKAGE package_name
IS
   {variable and type declarations }
   {cursor declarations}
   [module specifications]
END {package_name};

For example:

CREATE OR REPLACE PACKAGE Employee_pkg
AS

   PROCEDURE GetEmployeeName(i_empno    IN   NUMBER,
                            o_ename    OUT  VARCHAR2);
END Employee_Pkg;

This defines a package called Employee_pkg that contains a single stored procedure called
GetEmployeeAge.



Oracle8 and Oracle8i

505

The package body contains the actual implementation of the procedures within the package.
This effectively allows us to hide procedures inside the package by not declaring them in the
package specification:

PACKAGE BODY package_name
IS
  {variable and type declarations}
  {cursor specifications - SELECT statements}
  [module specifications]
BEGIN
  [procedure bodies]
END {package_name};

The specification for our Employee_pkg could look like this:

CREATE OR REPLACE PACKAGE BODY Employee_pkg
AS

   PROCEDURE GetEmployeeName(i_empno    IN   NUMBER,
                            o_ename    OUT  VARCHAR2)
   IS
   BEGIN
      SELECT ename
         INTO o_ename
         FROM emp
      WHERE empno = i_empno;
   END GetEmployeeName;

END Employee_pkg;

To call the GetEmployeeName procedure within Employee_pkg from ASP we use must prefix the
stored procedure name with the package name. We'll be covering the execution of stored procedures in
much more detail in the next section:

   With objCommand
      .CommandText = "{call Employee_pkg.GetEmployeeName(?, ?)}"
      .CommandType = adCmdText
      .Parameters(0).Direction = adParamInput
      .Parameters(0).Value = varEmpNo
      .Parameters(1).Direction = adParamOutput
      .Execute
      Response.Write "Name=" & .Parameters(1).Value
   End With

Now that we've had a brief look at Oracle packages we can use some of their features in the final section
in this chapter, when we come to retrieving ADO resultsets from an Oracle stored procedure. Before we
do that, let's create a sample application that uses a number of stored procedures to perform common
data-entry actions.

A Sample Oracle ASP Application
We are going to bring together all of the concepts discussed so far into a small ASP application based
around the scott database schema. This application will show a list of employees from the emp table
and allow the user to perform the usual data-entry procedures:

❑ Create a new employee

❑ Edit an existing employee

❑ Delete an employee



Chapter 15

506

To implement this application we will be using four ASP script files, an include file, and the
global.asa file. The include file is an ADO helper file that we have created ourselves called
ADOFunctions_inc.asp used to create our database connections as needed.

It is often a good idea to rename your included ASP files from .inc to .asp to prevent
unauthorized people from simply opening them in a browser. We've done this with
ADOFunctions_inc.asp as it contains a username and password which we don't want people
to have access to. I've kept the _inc suffix so that I know it's an include file.

We will be retrieving lists of data using simple SELECT statements whereas the add, edit, update and
delete functionality will be provided by four Oracle stored procedures. This will let us examine how we
go about calling Oracle stored procedure using INPUT and OUTPUT parameters with the aid of the
Microsoft OLE DB Provider for Oracle.

It is notoriously difficult to retrieve an ADO Recordset from an Oracle stored procedure. Oracle
simply does not allow us to execute a SELECT statement from within stored procedure without
assigning the returned values to a PL/SQL variable using the INTO keyword. There is a way to
achieve this functionality with ADO using PL/SQL tables or by using reference cursors. In the
next section, we will be covering the retrieval of an ADO Recordset from Oracle stored
procedures using PL/SQL tables and then we'll look at doing the same thing using reference cursors
and a PL/SQL package.

One word of warning though, in order to concentrate on the Oracle fundamentals, we won't be using
any DHTML features, so the screens do look rather bland!

global.asa
We won't use global.asa to handle application and session events, but we will use it to add a
reference to the ADO type library to all of our ASP scripts. This will allow us to use the constants such
as adCmdText for our ADO Command object. Enter the following line into global.asa:

<!-- METADATA TYPE="TypeLib"
     FILE="C:\Program Files\Common Files\System\ado\msado15.dll" -->

This uses the METADATA tag to include a TYPELIB file from the location specified. This is the default
location into which the ADO library is located, but you should update it to reflect your own
installation if it is different. By adding this line we can make use of all of the standard ADO constants
and enumerators.

Traditionally, ASP developers would include the Microsoft ADO include file, ADOVBS.inc, in
order to refer to the ADO constants. This would have to be done on every ASP script and is
potentially difficult to support. By using the METADATA tag you only have to declare it once which
is faster for your web server.

ADOFunctions_inc.asp
This include file is used in all of our ASP scripts that need to connect to the database. It is much better
to put commonly used code into a single include file and reference that in each of our pages, as there
would be only one place in which we need to change the username and password if we ever needed to.



Oracle8 and Oracle8i

507

So create a new folder called includes and add a new file called ADOFunctions_inc.asp containing
the following code:

<%
Function GetDBConnection()
   Dim objConnection

   Set objConnection = Server.CreateObject("ADODB.Connection")
   With objConnection
      .ConnectionString = "Provider=MSDAORA; " & _
                          "Data Source=Oracle8_dev; " & _
                          "User ID=scott; Password=tiger;"
      .Open
   End With

   Set GetDBConnection = objConnection
End Function
%>

The GetDBConnection function simply returns an ADODB.Connection object which points to our
Oracle database using the scott account.

Default.asp
Our home page, Default.asp, displays a list of all employees from the emp table using a SELECT
statement ordered by name. This page allows the user to create a new employee record by clicking the
create employee link, delete an employee by pressing the Delete link, or edit an employee by clicking
the employee's name. Both the edit and add employee link go to the EditEmp.asp page.



Chapter 15

508

So let's have a look at the ASP code behind this page:

<% Option Explicit
   Response.Expires = 0 %>
<!-- #include file="includes/ADOFunctions_inc.asp" -->
<HTML>
<HEAD>
   <META HTTP-EQUIV="Pragma" CONTENT="no-cache">
   <TITLE>Select an Employee</TITLE>
</HEAD>
<BODY>
   <CENTER><H2>Select an Employee</H2></CENTER>
      Select an employee from the list or
      <A HREF="EditEmp.asp">create employee</A>.<P>

As usual we start off with the Option Explicit statement so that we must declare all variables and
constants used in our code. We don't want this page to be cached by the browser so that any amended
records are displayed each time the page is shown. We achieve this using Response.Expires = 0 to
tell the browser that this page expires immediately.If your site is going to be accessed by users in
different time zones then it's a good idea to actually set this to a large negative number.

The line <META> tag is used to tell any proxy servers that they should not cache this page for the
same reason.

You'll notice this is the first time that we include our ADOFunctions.inc using the
#include directive.

<%
Dim objRecordset
Dim varSQL
Dim varEmpNo

varSQL = "SELECT emp.empno, emp.ename, emp.job, " & _
         "       emp.sal, dept.dname, dept.loc" & _
         "   FROM emp, dept" & _
         "   WHERE emp.deptno = dept.deptno" & _
         "   ORDER BY UPPER(emp.ename)"
Set objRecordset = GetDBConnection().Execute(varSQL)

Response.Write "<TABLE BORDER=1><TR>" & _
               "   <TD>Employee</TD>" & _
               "   <TD>Job</TD>" & _
               "   <TD>Salary</TD>" & _
               "   <TD>Department</TD>" & _
               "   <TD>Location</TD>" & _
               "   <TD>&nbsp;</TD>" & _
               "</TR>"

The objRecordset variable stores the result of our SELECT statement executed by calling the
GetDBConnection function to return an ADO Connection.

As with SQL Server, Oracle also supports table name aliases that can be used for long or duplicated
tables, such as:

SELECT EmpHol.Name
FROM EmployeesOnHoliday EmpHol
WHERE EmpHol.Department=1



Oracle8 and Oracle8i

509

Now we fill out the table with the data:

Do While Not objRecordset.EOF

   varEmpNo = objRecordset.Fields("empno")

   Response.Write "<TR>" & _
                  "   <TD><A HREF=EditEmp.ASP?EmpNo=" & varEmpNo & ">" & _
                                  objRecordset("ename") & "</A></TD>" & _
                  "   <TD>" & objRecordset("job") & "</TD>" & _
                  "   <TD>" & objRecordset("sal") & "</TD>" & _
                  "   <TD>" & objRecordset("dname") & "</TD>" & _
                  "   <TD>" & objRecordset("loc") & "</TD>" & _
                  "   <TD><A HREF=javascript:deleteEmployee(" & _
                  varEmpNo & ");>Delete</A></TD>" & _
                  "</TR>"

   objRecordset.MoveNext
Loop
Response.Write "</TABLE>"

We navigate through the records contained in the Recordset object, creating a table row for each
employee. We cache the employee number as it is used as part of the URL for the hyperlink to
EditEmp.asp.

Set objRecordset = Nothing
%>

<SCRIPT>
function deleteEmployee(EmpNo) {
   if (window.confirm("Are you sure you want to delete employee?") == true)
   {
      window.location = "DeleteEmp.ASP?EmpNo=" + EmpNo;
   }
}
</SCRIPT>
</BODY>
</HTML>

We finish by closing off the ASP script and defining the local JavaScript function deleteEmployee.
This function uses the window.confirm function to confirm whether the record should be deleted. If
Yes, then the employee delete script, DeleteEmp.asp is called.

DeleteEmp.asp
This page simply calls an Oracle stored procedure, emp_Delete, passing in the employee number so
that it can be deleted from the emp table.

We've covered stored procedures earlier in this book, so we'll just explain the important parts of this
new procedure. This stored procedure doesn't come as part of the default database, so we are going to
create it ourselves. Using SQL*Plus, or your preferred Oracle editor, you will need to connect to the
scott account and execute the following SQL to create the new procedure:

CREATE OR REPLACE PROCEDURE emp_Delete
   (i_empno IN NUMBER)
AS
BEGIN
   DELETE
      FROM emp
      WHERE empno = i_empno;
END;



Chapter 15

510

As you can see, it is a very simple procedure that takes one input parameter, i_empno, and deletes the
record with the corresponding employee number from the emp table. We use the IN statement to tell
Oracle that this parameter is for input only. You must tell Oracle if you want the value of parameters to
be updated as the procedure exits, using the OUT statement, in exactly the same way that you should use
the ByVal and ByRef statements in your own ASP procedures. I tend to prefix the name of each
parameter with an i_ or o_ to denote the direction. You can also specify a parameter as being both IN
and OUT but that's not a recommended practice.

So jumping back to DeleteEmp.asp, we have the following code:

<% Option Explicit
   Response.Buffer = True
%>
<!-- #include file="includes/ADOFunctions_inc.asp " -->
<HTML>
<%
Dim objCommand
Dim varEmpNo

varEmpNo = Request.QueryString("EmpNo")

Set objCommand = Server.CreateObject("ADODB.Command")
Set objCommand.ActiveConnection = GetDBConnection()

This time we are using the ADO Command object to execute our stored procedure because we need to
get at the parameters that make up this stored procedure. This is more important when you want to
retrieve the value of output parameters, as they are only accessible from the Command object's
Parameters collection rather than a Recordset.

With objCommand
   .CommandText = "{call emp_Delete(?)}"
   .CommandType = adCmdText
   .Parameters(0).Value = varEmpNo
   .Execute()
End With

Set objCommand = Nothing
Response.Redirect "default.asp"
%>
</HTML>

We use the CommandText property to tell the Command object the SQL statement to execute using the
{call procname} syntax. Each ? refers to a parameter to this stored procedure and can be referenced
in the Command object's Parameters collection – starting from 0. We simply set the first and only
parameter to that of the employee number passed in through the URL and then run the procedure using
the Execute function.

Finally, we redirect the user back to our home page, default.asp.
Another approach could have been to open a new pop-up window to confirm the delete, which
would have then refreshed default.asp using the JavaScript window.opener property, if the
delete was successful. If the delete operation failed, for any reason, the pop-up window could have
stayed open displaying the error message that was returned.



Oracle8 and Oracle8i

511

EditEmp.asp
This page allows existing employee's records to be updated or new ones to be added. If this is an
existing employee record, we will be passed the employee number as part of the URL. If there is no
employee number, then the page assumes that the user wants to add a new employee record.

This page uses a stored procedure, emp_GetData, to return the fields for this employee through a
number of output parameters, so you'll need to create the following stored procedure:

Remember that with Oracle, we cannot simply execute a SELECT statement inside a stored
procedure to return some records as we can with SQL Server!

CREATE OR REPLACE PROCEDURE emp_GetData
  (i_empno    IN   NUMBER,
   o_ename    OUT  VARCHAR2,
   o_job      OUT  VARCHAR2,
   o_mgr      OUT  NUMBER,
   o_sal      OUT  NUMBER,
   o_deptno   OUT  NUMBER)
AS
BEGIN
  SELECT ename, job, mgr,
         sal, deptno
    INTO o_ename, o_job, o_mgr,
         o_sal, o_deptno
    FROM emp
   WHERE empno = i_empno;
END;



Chapter 15

512

This time we have only one input parameter and five output parameters that are used to store the
employee details using the SELECT...INTO statement to transfer the values.

The ASP script has to do quite bit of work to display this page. It populates the list of departments and
managers using a custom VBScript procedure that writes out a list of OPTION statements based on a
Recordset of data, as we'll see shortly.

<% Option Explicit %>
<!-- #include file="includes/ADOFunctions_inc.asp " -->
<HTML>
<HEAD>
   <TITLE>Employee Details</TITLE>
</HEAD>
<BODY>
   <CENTER><H2>Employee Details</H2></CENTER>
<%
Dim objConnection
Dim objCommand
Dim objRSDepartments
Dim objRSManagers

Dim varEmpNo
Dim varEName
Dim varJob
Dim varMgr
Dim varSalary
Dim varDeptNo

We use a separate Recordset object to store the list of departments and managers so that we can
populate the SELECT list in the correct place. I always find it easier to transfer the record values to local
variables in one place.

On Error Goto Next
Set objConnection = GetDBConnection()

If Request.QueryString("EmpNo") = "" Then
   varEmpNo = 0

We create a database connection using GetDBConnection, and if there is no employee number passed
in the URL, we set the employee number to zero. If the user clicked on an employee's name, we would
have been passed the correct employee number.

For new employees, we use an Oracle Sequence to generate the new employee number, which we'll
cover shortly.

Else
   varEmpNo = Request.QueryString("EmpNo")
   Set objCommand = Server.CreateObject("ADODB.Command")
   Set objCommand.ActiveConnection = objConnection
   With objCommand
      .CommandText = "{call emp_GetData(?, ?, ?, ?, ?, ?)}"
      .CommandType = adCmdText
      .Parameters(0).Value = varEmpNo
      .Execute()



Oracle8 and Oracle8i

513

If we have an employee number then we need to create a Command object and specify the
emp_GetData stored procedure. This time we have six parameters with the first one being the
input parameter, the employee number, and the remaining five output parameters storing the
employee's details.

      varEName    = .Parameters(1)
      varJob      = .Parameters(2)
      varMgr      = .Parameters(3)
      varSalary   = .Parameters(4)
      varDeptNo   = .Parameters(5)
   End With

End If

Once we've called the Execute function, each of the Parameters items will contain our employee's
fields so it's just a case of transferring them to our local variables.

Set objRSDepartments = objConnection.Execute( _
                       "SELECT deptno, dname FROM dept ORDER BY dname")
Set objRSManagers = objConnection.Execute( _
                    "SELECT empno, ename FROM emp ORDER BY ename")

Set objCommand = Nothing
Set objConnection = Nothing

We use our connection object, objConnection, to retrieve a list of departments and managers for
our SELECT lists and then shut down the Command and Connection objects as soon as we've finished
with them.

Sub PopulateSelectOptions(ByVal objRecordset, ByVal varCurrentID)

   Dim varHTML
   Dim varSelected

   objRecordSet.MoveFirst

   Do While Not objRecordset.EOF
      If CLng(varCurrentID) = Clng(objRecordset.Fields(0)) Then
         varSelected = " SELECTED"
      Else
         varSelected = ""
      End If

      varHTML = varHTML & "<OPTION VALUE=" & objRecordset.Fields(0) & _
                varSelected & ">" & objRecordset.Fields(1) & "</OPTION>"
      objRecordset.MoveNext
   Loop
   Response.Write varHTML
End Sub
%>

PopulateSelectOptions is a general-purpose procedure that is passed a Recordset of data and the
ID of the default item to select. Its purpose is to navigate through each record and create a collection of
HTML OPTION tags using the field at position 0 as the ID and field 1 as the text to display. If this was a
full-blown application we'd probably put this function in an include file so that other pages could use its
functionality, but as this is an example, we'll leave it in the ASP.



Chapter 15

514

   <FORM ACTION="EditEmp_HND.ASP?EmpNo=<%=varEmpNo%>" METHOD="POST">
      <TABLE>
         <TR>
            <TD>Name:</TD>
            <TD><INPUT NAME="varEName" VALUE="<%=varEName%>"></TD>
         </TR>
         <TR>
            <TD>Job:</TD>
            <TD><INPUT NAME="varJob" VALUE="<%=varJob%>"></TD>
         </TR>

Now we can define the FORM that allows the user to enter the employee details. Notice that we append
the employee number, which can be zero for new employee records, to the query string for the form
action handler, EditEmp_HND.asp.

         <TR>
            <TD>Manager:</TD>
            <TD><SELECT NAME="varMgr" SIZE="1">
               <%
                  Call PopulateSelectOptions(objRSManagers, varMgr)
                  Set objRSManagers = Nothing
               %>               </SELECT></TD>
         </TR>

This is the first time that we call PopulateSelectOptions to create our list of OPTION tags. We
already have the <SELECT> tag so PopulateSelectOptions will generate the corresponding list of
<OPTION> tags for each record in objRSManagers.

         <TR>
            <TD>Salary:</TD>
            <TD><INPUT NAME="varSalary"
                       VALUE="<%= varSalary %>"></TD>
         </TR>
         <TR>
            <TD>Department:</TD>
            <TD><SELECT NAME="varDeptNo" SIZE="1">
               <%
                  Call PopulateSelectOptions(objRSDepartments, varDeptNo)
                  Set objRSDepartments = Nothing
               %>
              </SELECT></TD>
        </TR>
         <TR>
            <TD></TD>
            <TD>
               <INPUT TYPE="SUBMIT" VALUE="Save"> &nbsp;
               <INPUT TYPE="RESET" VALUE="Reset">&nbsp;
               <INPUT TYPE="BUTTON" VALUE="Cancel"
                    onclick="document.location.href='/';">
           </TD>
         </TR>

      </TABLE>
   </FORM>
</BODY>
</HTML>



Oracle8 and Oracle8i

515

We finish off by completing the input form, again using PopulateSelectOptions to show a list of
departments, and adding a Submit to submit the form, a Reset button to clear any edits and a Cancel
button to take the user back to the home page.

EditEmp_HND.asp
This page is the form handler that is called when the user submits the data-entry form. It calls
the parameterized stored procedure emp_Update to update an existing record or add a new one
using emp_Add.

Again, we are going to create these new stored procedures, so jump back to your SQL editor and
execute the following lines:

CREATE OR REPLACE PROCEDURE emp_Update
  (i_empno    IN  NUMBER,
   i_ename    IN  VARCHAR2,
   i_job      IN  VARCHAR2,
   i_mgr      IN  NUMBER,
   i_sal      IN  NUMBER,
   i_deptno   IN  NUMBER)
AS
BEGIN
   UPDATE emp SET
      ename = i_ename, job = i_job,
      mgr = i_mgr, sal = i_sal,
     deptno = i_deptno
   WHERE empno = i_empno;
END;

Now that we've created the stored procedure for updates, we need to create an Oracle Sequence object
before we create the emp_Add procedure. A sequence is an object that generates sequential numbers
that we can use as primary keys for our employee number column. Oracle does not support the
IDENTITY column that you would use in SQL Server so we must create a Sequence object to generate
the numbers for us. Sequences are created separately from the table that they are created for, so if a
table happens to be deleted (that is dropped) the sequence object will still exist. Each time you request
the next number in the sequence using the NEXTVAL property, the sequence will automatically update
itself irrespective of the table to column that it was originally created for.



Chapter 15

516

So from your SQL editor execute the following statement to create the sequence:

CREATE SEQUENCE empno_seq START WITH 9000;

The sequence is called empno_seq and starts at 9000. The reason why I've decided to start at 9000 is
because the emp table already contains some records and, in my case, the largest employee number was
7934, so I want to start at a number greater than 7934. A sequence has a number of properties that you
can call, but NEXTVAL is the one we need to get the next number in the sequence.

Now that's done we can create the add stored procedure by running the following SQL:

CREATE OR REPLACE PROCEDURE emp_Add
   (i_ename    IN  VARCHAR2,
    i_job      IN  VARCHAR2,
    i_mgr      IN  NUMBER,
    i_sal      IN  NUMBER,
    i_deptno   IN  NUMBER)
AS
BEGIN
   INSERT INTO emp(empno,
                   ename, job, mgr,
                   sal, deptno)
           VALUES(empno_seq.NEXTVAL,
                  i_ename, i_job, i_mgr,
                  i_sal, i_deptno);
END;

The ASP script is relatively simple:

<% Option Explicit %>
<!-- #include file="includes/ADOFunctions_inc.asp " -->
<HTML>
<HEAD>
   <TITLE>Update Employee Details</TITLE>
</HEAD>
<BODY>
   <CENTER><H2>Update Employee Details</H2></CENTER>
<%
Dim objCommand

Dim varEmpNo
Dim varEName
Dim varJob
Dim varMgr
Dim varSalary
Dim varDeptNo

We will be using a Command object in order to set the stored procedure's parameters and local variables
to store the value from the submitted form.

With Request

   varEmpNo = .QueryString("EmpNo")
   varEName    = .Form("varEName")
   varJob      = .Form("varJob")
   varMgr      = .Form("varMgr")
   varSalary   = .Form("varSalary")
   varDeptNo   = .Form("varDeptNo")

End With



Oracle8 and Oracle8i

517

We transfer the form fields into local variables.

Set objCommand = Server.CreateObject("ADODB.Command")
Set objCommand.ActiveConnection = GetDBConnection()

If varEmpNo <> 0 Then

   With objCommand
      .CommandText = "{call emp_Update(?, ?, ?, ?, ?, ?)}"
      .CommandType = adCmdText
      .Parameters(0).Value = varEmpNo
      .Parameters(1).Value = varEName
      .Parameters(2).Value = varJob
      .Parameters(3).Value = varMgr
      .Parameters(4).Value = CInt(varSalary)
      .Parameters(5).Value = varDeptNo
      .Execute()

      Response.Write "Record for employee " & varEName & _
                     " has been updated."
   End With

If we have employee number then it's just a case of calling the emp_Update stored procedure and pass
in each of the values.

Else
   With objCommand
      .CommandText = "{call emp_Add(?, ?, ?, ?, ?)}"
      .CommandType = adCmdText
      .Parameters(0).Value = varEName
      .Parameters(1).Value = varJob
      .Parameters(2).Value = varMgr
      .Parameters(3).Value = CInt(varSalary)
      .Parameters(4).Value = varDeptNo
      .Execute()

      Response.Write "Record for employee " & varEName & " has been added."
   End With
End If

Set objCommand = Nothing
%>
   <P>
   <A HREF="default.asp">Home</A>
</BODY>
</HTML>

In the case of a new record, we call the emp_add stored procedure and pass in the new
employee's details.

That concludes our brief ASP sample application based on the scott employee data. We've seen how it
is possible to call stored procedures using the {call procname?} syntax to retrieve data for a single
record and to manipulate records using the Command.Parameters collection. We made use of a
standard include file to create our database connection and a useful function to output a list of OPTION
tags based on a Recordset of data.



Chapter 15

518

Retrieving ADO Recordsets from an Oracle
Stored Procedure

We'll finish off with something of a holy grail. Unlike SQL Server, PL/SQL does not allow us to execute
a SELECT statement within a stored procedure without a corresponding INTO statement. This means we
cannot easily return a recordset back to the calling client whether it is an ASP script or another PL/SQL
program.

Consider the following SQL Server stored procedure:

CREATE PROCEDURE sp_GetAuthors
AS
BEGIN
   SELECT au_lname, au_fname
   FROM authors
   ORDER BY au_lname, au_fname
END

Try creating the following very similar stored procedure in Oracle:

CREATE PROCEDURE sp_GetAuthors
AS
BEGIN
   SELECT ename
   FROM emp
   ORDER BY ename;
END;

You'll receive the following error messages:

Errors for PROCEDURE SP_GETAUTHORS:

LINE/COL ERROR
-------- -----------------------------------------------------------------
4/3      PLS-00428: an INTO clause is expected in this SELECT statement
4/3      PL/SQL: SQL Statement ignored

Once upon a time, I searched Oracle's own PL/SQL documentation for an answer to this, and I got
the impression that this will never be implemented. I believe the reason was, that they feel a calling
program, X, should pass parameters into another program, Y, allowing Y to populate the results so
that X can then deal with them. This approach doesn't really help us from an ADO point of view.

However, it can actually be achieved by using PL/SQL tables and the Microsoft ODBC for Oracle, or
reference cursors with Oracle's Oracle Provider for OLE DB. We'll start off with PL/SQL tables and
cover reference cursors in the next section.

PL/SQL Tables are somewhat of a misnomer as it might be easier if they were called PL/SQL Arrays.
The following diagram shows three records from the emp table and how they would be represented in
three PL/SQL Table variables:



Oracle8 and Oracle8i

519

We have three columns, ENAME, JOB and SAL in our source result set. For each column of data we have
a corresponding PL/SQL table variable, o_ENAME, o_JOB and o_SAL, each mapping to a value of each
column. The PL/SQL table variables are distinct entities in their own right. In order to populate the
PL/SQL tables we need to scroll through the records in the source resultset, and add an entry for each
column to the corresponding element in each PL/SQL table.

PL/SQL tables have the following characteristics:

❑ One-Dimensional: each PL/SQL table can contain only one column of data.

❑ Integer-Indexed: Each element of the array is indexed by a single integer much like a
VBScript array.

❑ Unbounded Dimensions: There is no limit to the size of a PL/SQL table, as the structure
will alter in size to accommodate new elements.

❑ Uniform Data Type: Only a single uniform data type can be stored in a particular
PL/SQL table. So, if you start off with a NUMBER data-type, then all other elements
must also be a NUMBER.

PL/SQL table types are defined using the TYPE statement, for example:

TYPE tblFirstName IS TABLE OF VARCHAR2(30) INDEX BY BINARY_INTEGER;

This would declare a PL/SQL table type called tblFirstName that could be used by a variable to store
an array of strings up to 30 characters in length. A variable of this type could be declared as the
parameter to a stored procedure, thus:

PROCEDURE GetEmployeeList(o_FirstName OUT tblFirstName)

Each PL/SQL table type that you want to use must be defined within the specification section of an
Oracle Package.

In the case of a stored procedure that returns a list of employee names and numbers, we must create an
individual parameter for both the employee name and the employee number values, both being
declared using the PL/SQL table type as defined in our package specification.



Chapter 15

520

In order to populate the employee number and employee name PL/SQL tables with data, we can use a
cursor that loops through a selection of records and transfers each item of data into the corresponding
PL/SQL table element.

A cursor allows you to programmatically step through a result set of data, performing operations
based on the current row until the end of the result set is reached.

The easiest way to implement an Oracle cursor is by declaring it outside of a program block and
then opening it using a cursor FOR...LOOP. The cursor FOR...LOOP opens the cursor for you,
repeatedly fetches rows of values from the result set into fields and then closes the cursor once all
rows have been processed.

For example, the following cursor will calculate the total salary for all employees in the emp table:

DECLARE CURSOR emp_cur IS SELECT sal FROM emp;
               TotalSalary NUMBER;
BEGIN
   FOR emp_rec IN emp_cur LOOP
      TotalSalary := TotalSalary  + emp_rec.sal;
   END LOOP;
END;

We'll start our example off by creating a simple package that contains one stored procedure called
EmployeeSearch. This will allow us to retrieve a list of employees from the emp table within the
scott schema, based on their name.

Jump to your SQL editor and add the following package specification to the scott schema:

CREATE OR REPLACE PACKAGE Employee_Pkg
AS
TYPE tblEmpNo     IS TABLE OF NUMBER(4)    INDEX BY BINARY_INTEGER;
TYPE tblEName     IS TABLE OF VARCHAR2(10) INDEX BY BINARY_INTEGER;
TYPE tblJob       IS TABLE OF VARCHAR2(9)  INDEX BY BINARY_INTEGER;

PROCEDURE EmployeeSearch
   (i_EName   IN    VARCHAR2,
    o_EmpNo   OUT   tblEmpNo,
    o_EName   OUT   tblEName,
    o_Job     OUT   tblJob);
END Employee_Pkg;

Our package is called Employee_Pkg, which we will need to use when referencing the
EmployeeSearch procedure. We will be returning three columns in our Recordset: employee
number, name and job, so we have created a separate PL/SQL table type for each column.

Note that EmployeeSearch doesn't actually include any code – that's the job of the package body. If
you try to define the implementation here you'll get an error from Oracle.

We've defined one input parameter, the name to search for, and a separate output parameter for each of
the columns to return. Now we can create the package body – the bit that does the actual work, so
execute the following SQL script:



Oracle8 and Oracle8i

521

CREATE OR REPLACE PACKAGE BODY Employee_Pkg
AS
PROCEDURE EmployeeSearch
   (i_EName   IN    VARCHAR2,
    o_EmpNo   OUT   tblEmpNo,
    o_EName   OUT   tblEName,
    o_Job     OUT   tblJob)
IS

We start off by adding the word BODY before the package name, dropping the PL/SQL table definitions,
and adding the word IS to start the implementation.

CURSOR cur_employee (curName VARCHAR2) IS
   SELECT empno,
          ename,
          job
   FROM emp
   WHERE UPPER(ename) LIKE '%' || UPPER(curName) || '%'
   ORDER BY ename;

   RecordCount NUMBER DEFAULT 0;

If you recall from our overview of PL/SQL blocks, we need to declare any variables or cursors that
are going to be used by our procedure. We define a cursor called cur_employee that has its own
input parameter called curName and a number variable called RecordCount to store a count of the
records processed.

Our cursor isn't that sophisticated: it uses || to add the wildcard character '%' to the beginning and the
end of the required search name. In SQL Server, we would have used the + string concatenation
operator. This enables the LIKE statement to find any employee's names that contain the specified
characters. As we populate each of the PL/SQL table parameters we need to keep a track of the current
element being set, so we use RecordCount. PL/SQL tables are 1-based so we must increment the
RecordCount first as it starts from 0 initially.

   BEGIN
      FOR curRecEmployee IN cur_employee(i_EName) LOOP

         RecordCount:= RecordCount + 1;
         o_EmpNo(RecordCount):= curRecEmployee.empno;
         o_EName(RecordCount):= curRecEmployee.ename;
         o_Job(RecordCount):=   curRecEmployee.job;
      END LOOP;
   END EmployeeSearch;
END Employee_Pkg;

Here we have defined the actual implementation of the EmployeeSearch procedure. We simply
open the cursor and ask it to transfer each record into a cursor variable called curRecEmployee.
Notice that we didn't actually define the variable curRecEmployee, as this is simply a reference
name to the record structure for the cursor. We can still refer to it within our cursor FOR...LOOP
as though it was declared.

Then it's just a case of moving through each record, incrementing the record count, and transferring
each individual field into each output parameter in the identical element position using RecordCount.



Chapter 15

522

Now we need to call the procedure from an ASP script to populate the data. This is where you're likely
to have the most problems when writing your own procedures. The following rules must be
remembered, otherwise it simply won't work and you could spend days and days trying to work out why
– as I did!

❑ Use the Microsoft ODBC Driver for Oracle.

If you try to use the OLE DB Provider for Oracle you'll get an error message saying
"Catastrophic Error"! You should also try to ensure that you're using at least version
2.573.4202.00 of the driver.

❑ Argument Naming and Positioning.

When setting the Command object's CommandText, you must ensure that you use exactly the
same name and same position for each parameter as you did when you declared each
parameter in your stored procedure. If not, you'll get the rather misleading ODBC error
message "Resultset column must be a formal argument".

❑ Maximum Records Returned.

You must use the resultset qualifier as part of your CommandText string to tell the driver
which parameters are recordsets, such as:

"{call Employee_Pkg.EmployeeSearch("?, {resultset 100, o_EmpNo, o_EName,
o_Job})}"

The number after resultset indicates the maximum number of records to be returned in
this call. The driver actually allocates a memory cache to store this amount of data. (There
appears to be no documentation that confirms what happens when the number of records is a
lot less than this number.) If you exceed this number, by even one record, then you will
receive Oracle error ORA-06512. It is suggested that you limit the number of records within
your cursor population by passing the required value as an additional parameter to your
stored procedure and limiting the cursor FOR...LOOP. We didn't do this in our example but
it might be a nice exercise to try.

So we can now create a simple ASP
script to call our procedure. I'm going to
use a single ASP script that contains a
form that submits to itself and writes out
the search results.



Oracle8 and Oracle8i

523

<% Option Explicit
   Response.Expires = 0%>
<HTML>
<HEAD>
   <TITLE>Stored Procedure Recordset Demo</TITLE>
</HEAD>
<BODY>
   <CENTER><H2>Stored Procedure Recordset Demo</H2></CENTER>
<%
Dim strSearchName
Dim objConnection
Dim objCommand
Dim objRecordset
Dim varEmpNo

strSearchName = Request.Form("txtSearchName")
If strSearchName = "" Then strSearchName = "%"

We transfer the txtSearchName input field from the form into a variable. If it was empty, which it will
be the first time, we set it to % so that we get all matching names.

Set objConnection = Server.CreateObject("ADODB.Connection")
With objConnection
   .ConnectionString = "driver={Microsoft ODBC for Oracle};" & _
                       "server=Oracle8_dev;UID=scott;PWD=tiger;"
   .CursorLocation = adUseClient
   .Open
End With

Here we connect to the database using the Microsoft ODBC Driver for Oracle.

Now for the fun part:

Set objCommand = Server.CreateObject("ADODB.Command")
With objCommand
   Set .ActiveConnection = objConnection

   .CommandText = "{call Employee_Pkg.EmployeeSearch(" & _
                 "?, {resultset 100, o_EmpNo, o_EName, o_Job})}"
   .CommandType = adCmdText

   .Parameters(0).Value = strSearchName
   Set objRecordset = .Execute()
End With
%>

We are using the standard {call...} and ? syntax to define the first input parameter. Notice that we
have included the {resultset 100….} string, as mentioned above, to define those parameters that are
to be returned in the Recordset object and that we only want 100 records returned. We have simply
pasted in the names of the parameters exactly as we declared them. The only parameter that we actually
set is the first input parameter, the search name. Finally, we call the Execute statement to get our data.



Chapter 15

524

What you do is navigate through the records in the Recordset and creating a nicely formatted
HTML table.

<FORM ACTION="StoredProcResultSetDemo.asp" METHOD="POST">
<INPUT NAME="txtSearchName" VALUE="<%=strSearchName%>">
<INPUT TYPE="SUBMIT" VALUE="Search">
<P>
<TABLE BORDER=1>
  <TR><TD>Employee</TD><TD>Job</TD></TR>
<%
Do While Not objRecordset.EOF
   varEmpNo = objRecordset.Fields("o_EmpNo")
   Response.Write "<TR>" & _
                  "   <TD><A HREF=EditEmp.ASP?EmpNo=" & varEmpNo & ">" & _
                          objRecordset.Fields("o_EName") & "</A></TD>" & _
                  "   <TD>" & objRecordset.Fields("o_Job") & "</TD>" & _
                  "</TR>"

   objRecordset.MoveNext
Loop

Set objRecordset = Nothing
Set objCommand = Nothing
Set objConnection = Nothing
%>
</TABLE>
</FORM>
</BODY>
</HTML>

Retrieving ADO Recordsets using Reference Cursors
Oracle has released version 8.1.6 of its own provider, Oracle Provider for OLE DB. This provider has a
class name of OraOLEDB.Oracle that is used when defining your ADO connection string. It supports
the same set of Oracle data types as Microsoft's OLE DB Provider for Oracle with the additional
support for the binary object types BLOB, CLOB, NCLOB, and BFILE, but as with Microsoft's
provider, it also does not provide support for the Oracle8i object data types.

This provider gives us pretty much the same level of functionality as Microsoft's, except that it supports
the use of Oracle reference cursors so that we can return back an ADO Recordset object from a stored
procedure. A reference cursor is a pointer to a memory location that can be passed between different
PL/SQL clients, thus allowing query result sets to be passed back and forth between clients.

A reference cursor is a variable type defined using the PL/SQL TYPE statement within an Oracle
package, much like a PL/SQL table:

TYPE ref_type_name IS REF CURSOR RETURN return_type;



Oracle8 and Oracle8i

525

Here, ref_type_name is the name given to the type and return_type represents a record in the
database. You do not have to specify the return type as this could be used as a general catch-all
reference cursor. Such non-restrictive types are known as weak, whereas specifying the return type is
restrictive, or strong. The following example uses %ROWTYPE to define a strong return type that represents
the record structure of the emp table:

DECLARE TYPE EmpCurType IS REF CURSOR RETURN emp%ROWTYPE;

So let's jump straight to an example. We'll create a new Oracle package that contains a single
procedure, EmployeeSearch, which returns a list of matching employee names. From your SQL
editor, execute the following code to create the package specification:

CREATE OR REPLACE PACKAGE Employee_RefCur_pkg
AS

   TYPE empcur IS REF CURSOR;
   PROCEDURE EmployeeSearch(i_EName     IN  VARCHAR2,
                           o_EmpCursor OUT empcur);
END Employee_RefCur_pkg;

We've created a new type called empcur that returns a weak reference cursor that we use as an output
parameter to the EmployeeSearch procedure. Now we need the package body:

CREATE OR REPLACE PACKAGE BODY Employee_RefCur_pkg
AS
   PROCEDURE EmployeeSearch(i_EName     IN  VARCHAR2,
                            o_EmpCursor OUT empcur)
   IS
   BEGIN

      OPEN o_EmpCursor FOR
         SELECT emp.empno, emp.ename, emp.job,
             emp.sal, dept.dname, dept.loc
         FROM emp, dept
         WHERE ename LIKE '%' || i_EName || '%'
            AND emp.deptno = dept.deptno
         ORDER BY UPPER(emp.ename);
   END EmployeeSearch;
END Employee_RefCur_pkg;

This code is very similar to our previous stored procedure, except that we don't need to transfer each
column in distinct PL/SQL tables, as the reference cursor, o_EmpCursor, is returned back to the client.
The Oracle Provider for OLE DB converts any parameters that reference cursors into an ADO
Recordset for us – but only if we add PLSQLRSet=1 to our connection string, which we'll cover next.



Chapter 15

526

Let's have a look at the results page that calls this
stored procedure:

The actual ASP is very similar to our previous example so we'll just concentrate on the sections that
are different:

<%
Dim strSearchName
Dim objConnection
Dim objCommand
Dim objRecordSet
Dim objNameParam
Dim varEmpNo

strSearchName = Request.Form("txtSearchName")
If strSearchName = "" Then strSearchName = "%"

Set objConnection = Server.CreateObject("ADODB.Connection")

So far it's just the same, except that we define a new variable, objNameParam, that we'll use as an ADO
Parameter object to pass in the search name entered.

With objConnection
  .ConnectionString = "Provider=OraOLEDB.Oracle;" & _
                      "Data Source=Oracle8i_dev;" & _
                      "User ID=scott;" & _
                      "Password=tiger;" & _
                      "PLSQLRSet=1;"
  .Open
  Response.Write "ADO Provider=" & .Provider & "<P>"
End With



Oracle8 and Oracle8i

527

Here we tell ADO to use the Oracle Provider for OLE DB, OraOLEDB.Oracle, and we set the
PLSQLRSet attribute to tell the provider that it should parse the PL/SQL stored procedures to
determine if any parameters return a record set. OraOLEDB can only return one recordset per stored
procedure. If you call a stored procedure that returns more than one recordset then OraOLEDB will only
return the first argument of a ref cursor type.

If you omit the PLSQLRSet attribute, or you set it to 0, then you'll receive the following Oracle error:

ORA-06550: line 1, column 7: PLS-00306: wrong number or types of arguments in call
to 'EMPLOYEESEARCH' ORA-06550: line 1, column 7: PL/SQL: Statement ignored

The rest of the code goes as follows:

Set objCommand = Server.CreateObject("ADODB.Command")
With objCommand
   Set .ActiveConnection = objConnection

   .CommandText = "{call Employee_RefCur_pkg.EmployeeSearch(?)}"
   Set objNameParam = .CreateParameter("SearchName", adBSTR, _
                                        adParamInput, , strSearchName)
   .Parameters.Append objNameParam

   Set objRecordSet = .Execute()
End With

Although our stored procedure has two parameters, the search name and the reference cursor that is
returned, you must not bind the reference cursor as a parameter using the ? attribute when using
OraOLEDB, so we've included only one ? character to represent the Name input parameter.

The ADO Parameter object, objNameParam, is created using the Command object's
CreateParameter function. CreateParameter is called in the following way:

Set parameter = command.CreateParameter(Name, Type, Direction, Size, Value)

objNameParam is declared as an adBSTR type because this maps to Oracle's VARCHAR2 data type.
Once we've created the Parameter we need to add it to the Command object's Parameters collection
using the Append method.

Finally we call the Execute function to return a Recordset object that represents the result set from
the o_EmpCursor reference cursor parameter. That's all there is to it. We can then navigate through the
Recordset object as usual.

It's worth remembering that if you try to call the stored procedure using the Parameters
collection directly:

   .CommandText = "{call Employee_RefCur_pkg.EmployeeSearch(?)}"
   .Parameters(0).Type = adBSTR
   .Parameters(0).Direction = adParamInput
   .Parameters(0).Value = strSearchName



Chapter 15

528

you'll get the following runtime error:

The provider cannot derive parameter info and SetParameterInfo has not been called

Therefore you must use the CreateParameter function.

That wraps up our look at retrieving ADO Recordset objects from Oracle stored procedures. As
you've seen, we have two choices: PL/SQL tables with the Microsoft ODBC for Oracle Driver or
reference cursors with Oracle's Oracle Provider for OLE DB. On the face of it, the use of PL/SQL
tables does appear rather convoluted in comparison to the ease of reference cursors. Both are relatively
inefficient in terms of server performance and the Oracle Provider for OLE DB has been regarded as
rather buggy. Again, it's your choice; it's difficult to define what each can and can't do. As ever, you
should investigate how both methods perform in your own environment, looking at response times
along with CPU and memory usage.

Summary
That just about brings us to the end of this guide to connecting to an Oracle database from an ASP
application. We covered quite lot of ground here:

❑ Installation and configuration of the Oracle8 client software, Net8

❑ Using the Microsoft OLE DB Provider for Oracle

❑ Using the Microsoft OLE DB Provider for ODBC

❑ Using Oracle Objects for OLE (OO4O)

❑ PL/SQL fundamentals

❑ Creating a sample ASP application based on the scott account

❑ Showing that it is possible to retrieve an ADO Recordset from an Oracle stored procedure,
using both PL/SQL tables and reference cursors

Before we finish this chapter, take look at the chart below comparing each of the common methods of
data access for Oracle. I added an additional 7000 records to the emp table and then used each of the
methods to retrieve these records and display them using an ASP script. Each method was executed
three times and after each test I rebooted the server machine so that there would be very little chance of
data being cached by either Oracle or the web server (for this test the web server also doubled as the
Oracle database server to cut the time taken to shutdown and restart).



Oracle8 and Oracle8i

529

In these tests, MSDAORA was used with a standard SQL SELECT statement, as was the ODBC Driver
for Oracle and OO4O, and finally I used the ODBC Driver for Oracle in conjunction with PL/SQL
tables, and Oracle's Oracle Provider for OLE DB with a reference cursors as just described. The Y-axis
shows the amount of time taken to complete each test in seconds. I also monitored the CPU and
memory usage and they were all very similar for each test.

You can see that there is not that much difference between each method. When choosing which method
to use, the underlying factor will always be good database design and coding practices.

Don't forget that you can download all of the SQL and ASP scripts for this chapter from the Wrox
web site at http://www.wrox.com.



Chapter 15

530


