-% |~
=
-

Oracle8 and Oracle8i

Wouldn't life be a lot easier if everyone used the same operating system, the same Internet browser
software and the same relational database? Unfortunately things aren't that simple, so we

need to be as flexible as possible. This book introduces all the main databases and data sources that
you, as an ASP developer, may come across. Here, we will cover one of the most important relational
databases — Oracle.

In this chapter we will cover the basics of configuring a web server to connect to a remote Oracle8 or
Oracle8i database, although many of the techniques apply equally well to previous versions of Oracle
7.x. We'll show you how to use the common ODBC Drivers and OLE DB Providersin conjunction
with ActiveX Data Objects (ADO) to manipulate data stored within an Oracle database from within
an ASP application.

We'll build upon each area by creating a collection of ASP scripts that will use the sample scot t
database schema showing how to retrieve and update data in a flexible and more importantly,

scalable manner. We will finally cover the (unfortunately), advanced concept of retrieving recor dsets
from an Oracle stored procedure. Don't worry though, it's relatively easy to use scalar | NPUT and
QUTPUT parameters to return individual parameters from an Oracle stored procedure — which we'll also
be covering in this chapter.

All of the SQL and ASP code for this sample application can be downloaded from the
Wrox web siteat htt p:// waww. wr ox. com

Chapter 15

A Brief History of Oracle

Way back in June 1970, Dr E F Codd published a paper entitled A Relational Model of Data for Large
Shared Data Banks. This relational model, sponsored by IBM, then came to be accepted as the definitive
model for relational database management systems - RDBMS. The language developed by IBM to
manipulate the data stored within Codd's model was originally called Structured English Query
Language, or SEQUEL, with the word 'English' later being dropped in favor Structured Query
Language — SQL.

In 1979 a company called Relational Software, Inc. released the first commercially available
implementation of SQL. Relational Software later came to be known as Oracle Corporation.

Oracle Version 8

You'll find versions of Oracle8 available for many of today's popular computing environments, in
particular Windows, UNIX and Linux. This is one of the reasons why it's so popular, and luckily for us
as developers, doesn't make that much of a difference which platform it is running on.

The original version of Oracle8 was designed to support applications in the up-and-coming network-
computing era, ranging from a small departmental application right up to a high-volume enterprise-wide
system. In order to provide this level of flexibility, Oracle8 comes in two different editions:

O Oracle8

O Oracle8 Enterprise Edition

Both editions actually share the same code base, but the difference is that the standard edition (referred
to simply as Oracle8) is aimed at smaller applications, whereas its big brother, the Enterprise Edition,
comes with a number of high-end features that allows it to support the thousands of users of larger
enterprise-wide applications. The Enterprise Edition provides greater support for very large databases
containing hundreds of terabytes of data, whilst the number of columns per table and maximum
database size, for both editions, has been increased compared to previous versions of Oracle.

In order to support large numbers of users, both the Oracle8 and Oracle8 Enterprise Edition servers
provide a method of connection pooling that temporarily drops and then re-uses a physical connection
for those users that are idle, in conjunction with its networking software Net8. With this type of
technology there is no reason why an Oracle server cannot support many thousands of concurrent users.

With that said, it's worth remembering that our ASP-based applications, if designed correctly, should
connect and disconnect from the Oracle database as soon as they have completed a certain task, rather
than hold onto a database connection for the life of the user's session. Don't forget that Microsoft
Transaction Server and OLE DB also offer connection-pooling techniques to save the valuable time
taken to initialize database connections.

Traditional client/server applications that maintain a user's connection, until the application has
closed, will more than likely utilize Oracle's own connection pooling rather than that of OLE DB
which pools connections based on the same username and password combination.

The actual edition of Oracle8 that we connect to again makes little practical difference to the front-end
applications that we develop, as we use the same query language and networking software to manipulate
the data.

474

Oracle8 and OracleS8i

Both editions of Oracle8 provide support for the emerging SQL-3 standard for object-type definition.
SQL-3 allows us to create object types that, for example, define a person's address that we could then
use directly in our database, and access through our programs.

For a full investigation into Oracle's object support, check out the Oracle TechNet at
http://technet.oracl e.com

Oracle Version 8i

Oracle8i is the latest incarnation of the Oracle8 data server. If you hadn't already guessed it,
the 'i' in Oracle8i refers to the Internet. Oracle Corporation bills Oracle8i as "the database for
Internet computing".

All of the above Oracle8 features apply just the same to the new Oracle8i, with the Oracle8i data server
also being available in two editions — the standard edition, Oracle8i, and the high-end version, Oracle8i
Enterprise Edition.

The major change to the Oracle8i Enterprise Edition is the inclusion of support for the Java Virtual
Machine allowing developers to execute Java code directly from within the database engine. Whereas
previously, the only way to procedurally manipulate Oracle data was through its PL/SQL language, you
can now use Java to do exactly the same job.

So are they doing away with PL/SQL? This does seem to be the general trend if you consider that
the next version of SQL Server (the one afier version 2000) will allow stored procedures written in
any .Net language and that DB2 already provides support for Java stored procedures. SQL is here
for the foreseeable future, but maybe for the benefit of ODBC and OLE DB access.

Oracle8i includes the Internet File System, iFS, a Java application that brings the combination of an
integrated file system and database into one server to provide text searches and querying of files and
data stored within iFS.

Another new technology in Oracle8i is Oracle WebDB that allows dynamic web sites to be built and
deployed from within the Oracle database. WebDB provides an HTML interface so that non-
programmers can develop their own web-based database applications. It includes a lightweight HTTP
listener that can act as a web server and a PL/SQL interface to the database. As web developers,

we might want to discourage non-programmers from developing their own web sites; this is not just
because of our own job security, but also due to the fact that small in-house projects have a tendency
to grow into large projects that may not have been designed with scalability in mind through poor
programming techniques.

Oracle8i's new interMedia feature provides additional support for multimedia content such as image,

video, text, and audio. interMedia allows users to query data held within common document formats

such as HTML, Adobe Acrobat (PDF) and the Microsoft Office applications such as Word documents
and Excel spreadsheets, and provides support for the delivery of streaming media in conjunction with

common streaming servers such as Oracle Video Server and RealVideo.

Release 2 of Oracle8i (version 8.7.6) also brings native support for XML.
If you've used Oracle8 prior to Oracle8i, then you'll notice that the developer's tools such as the
Schema Manager, Oracle Installer and Net8 Assistant have had a radical interface makeover. I

personally find them slightly slower to use than their previous counterparts owing to the fact that most
are now written in Java, but they do appear more user friendly.

475

Chapter 15

Installing Oracle Client Components

In this section we will be installing the Oracle client components on an IIS-based web server to
enable our ASP scripts to communicate with an Oracle database server. Once the client programs
have been installed we will be using Oracle's configuration utilities to configure our web server to
connect to Oracle.

With the exception of cosmetics, there are very few differences between the Oracle8 and Oracle8i
installation programs, so we will be showing screen shots from the Oracle8i installation.

In order to access an Oracle database, a number of software components need to be installed on a client
computer. Oracle8 uses its networking component Net8 to provide client-server and server-server
connectivity for many common protocols and platforms.

In versions prior to Oracle8, the forerunner to Net8 was SQL*Net version 2 - you'll find lots of
documentation that still refers to SQL*Net. Net8 is backwardly compatible with SQL*Net version 2,
allowing Net8 to access both Oracle7 and Oracle8 databases. It is possible, however, to connect to an
Oracle8 database using SQL*Net but some of the new network features will not be available.

Once you've installed the Oracle client components, the Net8 Easy Config and Net8 Assistant

applications can be used to configure your Net8 settings. Both applications use a number of . or a
configuration files that you can, if you know what you're doing, edit yourself in Notepad. We'll go
through the installation of the client components before we go into the details of the applications.

The Oracle client components are supported on all 32-bit Windows platforms:
Windows 95, Windows 98, Windows NT 3.5 and NT 4 Server and Workstation, and
Windows 2000.

By running the familiar set up. exe file you will be presented with a screen welcoming you to the
Oracle Universal Installer, or Oracle Installer as Oracle8 calls it. After clicking Next your first choice is
to tell the Installer where to put the physical files that it installs. This location is known as the Oracle
Home setting:

' Oracle Universal Installer [_ (=]

1) File Locations

Source...

Enter the full path of the file representing the productis) you wanta install

Fath | priDiskiistageiproducts jar Browse
Destination...

Enter ar select an Oracle Home name and its full path:

Mame: | nracledi_dey -

Fath: ‘Ij ‘oraclegi_dey ~| Browse

About Oracle Universal Installer. J

Installed Products...

476

Oracle8 and OracleS8i

This allows you to install multiple versions of the Oracle products onto the same machine without an
installation conflicting with any other installation. Oracle Home essentially defines the location of a
folder into which the software is installed. If you only plan to have one set of Oracle products installed
on the machine, which is very often the case, then choose DEFAULT_HOVE for the Name. In my case, I
have a number of Oracle products installed, so I have given it a name of oracle8i_dev with the files
being located in the d:\oracle8i_dev folder.

Clicking the Next button takes you to the Available Products screen:

cle Universal Installer

\’ Available Products

Select a product to install.

O OracleBi 8.1 6.0.0

Installs an optional pre-configured starter detabase, product options, management tools, networking
services, utilties and basic client software for an Oracle database server

0
Installs erterprise management tools, networking services, uilties, development tools and precompilers
and basic client software.

T Oraclesi Management Infrastructure 8.1.6.0.0

Inzstalls the management server, management tools, networking services | utilties and basic client
software

Here you must choose the actual product to install: the database server, client software, or
management infrastructure software. In many cases you will be connecting to an Oracle database
running on a different server to that of your web server, so you should select the second option,
Oracle8i Client. If your web server also happens to be your database server then you will need to select
the first option to install the actual database sever and, optionally, a starter database accessed via the
scot t account. The Management Infrastructure option installs the client components along with
directory services components.

In my case, I am installing the Oracle client on a web server that will connect to Oracle on a remote
server, so I selected Oracle8i Client.

Once you've clicked Next, you will be asked about the Installation Type (the Oracle8 installation calls
this the Primary Function). The list of options shown is dependent upon the item selected from the
previous screen. If you had chosen to install the Oracle server then you will see a list of options, such as
whether to include the pre-configured starter scott database.

477

Chapter 15

In the case of the Oracle Client installation I Oracle Universal Installer - O[]
you can specify the type of installation
required for the client components

depending upon the features that the client (@

machine needs' Oracle8i Client 8.1.6.0.0

What type of installation do you want for Oracle8i Client 8.1.6.0.07
® Adrministrator (281MB)

Inestalls the management console, management tools, netwarking services, Uilties, basic clert softwars

Installation Types

“ Programmer (163MB)

Inestalls tools for developing spplications, networking services and basic client software:

 Application User (B1MB)

Installs networking services and basic client software.

 Custom
Enables you to choose individual components to install

If you need to perform DBA tasks such as creating and backing-up databases, and stopping the server
then choose the Administrator option. This will install all of the utilities required to administer an
Oracle server.

If the machine is used as your development server then it's a good idea to choose the Programmer
option to install a subset of the Administrator tools. However, you won't get utilities such as the
Enterprise Manager Console used to administer an Oracle server.

The Application User option should be selected if the machine is used as your web server. This will
only install the basic networking and client components and none of the admin or programming tools.

The last option, Custom, allows you to specify exactly which components should be installed.

You can decide which items should be installed on your machine, but some organizations do not
allow developers to perform traditional DBA functions such as stopping servers - for very good
reasons. You can always add or remove components using the Installer at a later date. Personally I'd
want everything that's available so I'd choose Administrator anytime!

After you've clicked Next (for the last PEOCcl el s 85 L[]
time) the Installer will show a summary

page confirming the options that you

have selected: Q) Summary
Oracle8i Client 8.1.6.0.0

Linstaliation Type : Administrator A
Product Languages
LEnghsh N
Space Requirements
I:Vu\ume DiARequired 218MB : Available 2.51GB
Yolume CARequired 13MB : Available 95MB
New Installations {99 products)
Advanced Quausing (AQ) API 8.1.6.0.0
Agent Required Support Files 8.1.6.0.0
-Assistant Common Files 81 6.0.0
Change Management Quick Tour 2.1.0.0.0
DBA Management Pack Quick Tour2.1.0,0.0
DBW1.1.2.00 =

478

Oracle8 and OracleS8i

Now it's just a case of pressing the Install button to install all of the required programs. Once the
installation has been completed you can move onto configuring Net8, the client software, to connect to
your Oracle server.

Configuring Net8

As mentioned earlier, we need to install a layer of network software on our web server that allows us to
communicate with Oracle. By selecting the Client installation, the Oracle Installer will have installed
Net8, which we now have to configure.

Net8 supports standard network protocols, such as TCP/IP, to connect to Oracle8 servers through the
use of user-friendly aliases called service names. A service name is simply a name used to refer to an
Oracle server much as we use URLs in preference for hard-to-remember IP addresses.

You have a number of ways in which to store these lists of service names:

0 Domain Name System (DNS)
O Local client configuration files
0 Oracle Name Server

O Non-Oracle name server

Net8 uses Oracle Protocol Adaptors to map the following industry-standard network protocols into a
standard that it can recognize internally:

TCP/TP Widely-used Internet network protocol

SPX Another commonly used network protocol

Named Pipes Microsoft's networking protocol specific to PC-based LANs
Bequeath Used for local Windows 95 and 98 Personal Oracle8 installations
Logical Unit Type Part of IBM's peer-to-peer SNA network

Oracle8 comes with two utilities to configure Net8: Net8 Easy Config, to edit our list of service names,
and Net8 Assistant, an advanced utility that allows us to configure service names, network listeners,
Oracle Names Servers and local configuration files. Configuration using Net8 Assistant is primarily a
DBA role so we won't cover it here. We will be using the Net8 Easy Config application to configure
our client.

There are a number of ways to store the list of service names with the two most commonly used
methods being:

O Host Naming — Uses existing DNS-based or a centrally maintained HOSTS file for name
resolution. By simply using the host's network name, no client configuration is required.

O Local Naming — Uses a local configuration file, TNSNAVES. ORA, to resolve names.

Host Nani ng does not require any client configuration so we will take a look at Local Nami ng using
the Net8 Easy Config program. Net8 Easy Config edits a file called TNSNAVES. ORA in the

i nstal | ati on_f ol der\ Net 80\ Admi n folder, which can be edited manually using Notepad. In many
Oracle sites it is a common practice to simply copy the TNSNAVES. ORA file from the Oracle server
machine onto the client.

479

Chapter 15

TNS stands for Transparent Network Substrate (TNS). This is a non- proprietary low-level
interface that manages the opening and closing of sessions and the sending or receiving of requests.

The screens that make up the Oracle8 and Oracle8i Net8 Easy Config (Net8 Configuration Assistant in
Oracle8i) applications do differ somewhat so we'll work through both versions to configure connecting
to an Oracle8 and Oracle8i server.

If you are configuring an Oracle8 client then start the Oracle Net8 Easy Config and select Add New
Service. Our DBA has called the Oracle8 server Or acl e8_Dev, so we'll type that name in — you'll have
to use the name of your own Oracle8 server. You may find that this is the name of the actual server,
provided that it is only running one instance of Oracle.

You may see a dialog box warning you that Net8 Easy Config has found a number of comments in
the configuration file TNSNAVES. ORA. It is generally safe to ignore this warning message.

In the case of our Oracle8i database, we have a server called Or acl e8i _Dev so we'll use that for the
name. Before you can enter the Oracle8i service name, choose the Local Net Service Name
configuration option, click Next and then choose the Add item to add a new service name before
pressing Next again. Finally you must tell the Oracle8i Configuration Assistant that you want to access
an Oracle8i database. Clicking Next will take you to the Service Name screen:

Net8 Configuration Assistant: Net Service Name Configuration, Service Name

Oracle Net8 Easy Config [<]
Welcome to the Service Mame Wizard,
Service Names, also called Database Aliases, are user-

defined logical names used to identify and connectto an
Qracle database.

Choose Action Choose Service Mame—
For an Oracledi database or service you must
provide its senvice name. An OracleSi database's

senice name is normally its global datahase name

MNews Service Name

® Add Mew Service Oracle8_Dev

 odify Existing Services Service Nare: |Oraclesi_dev
 Delete CMEXAMPLE WORLD &
 Test T PERAMP LE WORLL

MMPEXAMPLE WORLE
EXTPROC_COMMECT]

Cancel =Back | Next= | Eifisf Cancel Help

The next step is to choose the type of network protocol used to communicate with the server. Typically
this will most likely be TCP/IP:

Oracle Net8 Easy Config et Service Name Configur, Select Protocals

Select the networking protocol used to connect to and
communicate with the database you wantto use

IP {Internet Protocol)

To communicate with the database across a network, a
network protocol is used. Selectthe protocol uged for the
datahase you want to access.

T0C

SPH (NetWare Metwarking)

MNarmed Pipes (Microsoft Networking)
Begueath (Local database)

IPC (Local Process)

Flease ensure that the networking protocol is configured
and tested for simple connectivity and that Oracle support
for that protocol has heen installed

Cancel < Back | Mext = il w &

480

Oracle8 and OracleS8i

The host name is the resolved name used to refer to the server, which in our case is the same name
given to this service name - for ease. It is possible to install the Oracle server software to listen on a
different TCP/IP port number. By default, port number 1521 is used for Oracle installations, in much
the same way that port number 80 is used for HTTP requests. Unless your DBA has used a different
port number for additional security, select the default option:

TCPAP Protocol

Specify the host name for the computer where the
database is [ocated and the port number where the
database can he contacted

Hiost Narme: Oracles_Dev

The default part number of 1521 is used in most
locattons. Change this anly if you know that the part
number for the database youswant to use is different

Port Number. 1871

To communicate with the database using the TCRIP
protocol, the database computer's host name is required,
Enter the host name for the computer where the datahase
is located

Host Mame Oraclegi_Dey|

ATCPAP port number is also required. In most cases the
standard port number should be used

@ Use the standard port number of 1521,

" Use another port number. [1521

Cance\l = Back | Mext> Finishl Cancel Help < Back Wext 3

There is one additional step to complete before testing an Oracle8 connection: you have to type in the
name of the database System Identifier, or SID to connect to. It is possible to run more than one
instance of Oracle on the same server by giving each instance a unique SID by which it can be
identified. If there is only one instance installed, then the Oracle server installation will default to
calling it ORCL, which your DBA can confirm:

Oracle Net8 Easy Config I

The SID (System IDentifier) identifies the specific Oracle
datahase instance to which you want to connect. ORCL s
the default, however other SIDs are commaon.

Flease enter the SID for the database you wantto use.

Database SI0: I ORCL

Cancell = Back Finishl

If you do have a number of SIDs per server then it might be a good idea to use the SID as the name
Sor each service.

To test the new service name, you must enter a valid user name and password when using Oracle8.
Typically you can enter the scot t /t i ger username/password combination provided that the pre-
configured scott database has been installed. The Oracle8i version actually defaults to using
scott/tiger for you.

481

Chapter 15

If you've entered the correct host name and username/password then you should receive a message
saying that the connection test was successful. If you receive the error message ORA-12545: connect
failed because target host or object does not exist, you need to recheck the values of your host name,
port number and SID. You should also confirm that Oracle is actually running on the host specified.

The message ORA-01017: invalid username/password; logon denied is a lot more encouraging; it
means that you successfully communicated with the Oracle server, but you entered the wrong username
or password.

ORA-12545 and ORA-01017 are the common error messages that you are likely to come across, but
you may receive any of the following messages as well:

ORA-12154: Net8 could not find the service name specified in your

TNSNANMES. ORA file.
"TNS:could not resolve

service name" Make sure that the TNSNAVES. ORA file actually exists and that
you do not have multiple copies of the TNSNAVMES. ORA file.

Make sure that you do not have duplicate copies of the
SQLNET. ORAfile.

When using domain names ensure that your SQLNET. ORA file
contains a NAMES. DEFAULT_DOVAI N value.

ORA-12198: The client could not find the required database.
"TNS:could not find Is the service name spelled correctly?

path to destination"
Is TNSNAMES. ORA file in the correct folder?

and

Check that the service name ADDRESS parameter in the connect
ORA-12203: descriptor of your TNSNAVMES. ORA file is correct.
"TNS:unable to connect Get your DBA to check that the Oracle Listener on the remote
to destination" server has started and is running.
ORA-12224: Could not connect because the listener is not running.
"TNS:no listener" Does the destination address match one of the addresses used by

the listener.

Are you running the correct version of Net8 or SQL*Net?

Now that we've cover ed some of the differ ences between Oracle8 and Oracle8i, from
now on we'll refer to them both collectively as Oracle8. When we come across a
distinction between the two, we'll highlight it.

Much like SQL Server's user spaces, Oracle groups database objects, such as tables, indexes and
procedures, into what is called a schema. A schema maps to an actual login name. So, in the case of the
scot t login name you will find a whole host of database objects under the scott account. scott is the
sample database schema created by the Oracle Installer when you first install the Oracle server.
Typically, a new default Oracle installation will have the following logins created:

482

Oracle8 and OracleS8i

Username Password Password
scott tiger Sample login.
sys change_on_ install Database administrator. Can perform all operations

such as stopping and starting the database.

system manager Operations user that can perform operational tasks
such as database backups.

We've gone through the process of installing Oracle's client networking software, Net8, then added
and tested a new Net8 service name to connect to an Oracle8 server called Or acl e8_dev and an
Oracle8i server called Or acl e8i _dev. Now it's time to look at how we connect to an Oracle
database through ASP.

Connecting to an Oracle Database

There are a number of ways in which we can connect to an Oracle database in order to manipulate its
data from within our ASP scripts. Which one you use rather depends what you are trying to achieve and
whether your organization prefers access through stored procedures, as the features supported by one
method may not be supported in another.

As well as Oracle Corporation, there are many third-party vendors such as Microsoft and Intersolv that
provide a number of products to communicate with Oracle. The following list represents the more
commonly used tools:

Microsoft OLE DB Provider for Oracle

Microsoft OLE DB Provider for ODBC

Microsoft ODBC Driver for Oracle

Oracle ODBC Driver

Intersolv's Merant range of OLE DB providers and ODBC drivers
Oracle Objects for OLE by Oracle

Oracle Provider for OLE DB by Oracle

o o o o o o oo

Microsoft's Universal Data Access (UDA) initiative contains a set of tools that we can use to
communicate with an Oracle database. With the integrated Microsoft Data Access Components
(MDAC) suite we can use ActiveX Data Objects (ADO) in conjunction with the Microsoft OLE DB
Provider For Oracle (MSDAORA. DLL) or the Microsoft ODBC Driver for Oracle (MBORCL32. DLL) to
communicate effectively with Oracle in a way that is reliable, scalable and offers high performance
when using ADO.

Microsoft also offers the universal OLE DB Provider for ODBC Drivers (MSDASQL. DLL) that allows any
ODBC data source to make use of the improvements in OLE DB. This, the default provider used by
ADO, was developed so that any existing ODBC-based data could fit into the UDA environment
efficiently and without losing an organization's ODBC investment.

483

Chapter 15

As if this didn't give us enough flexibility, we also have the universal Merant range of OLE DB
providers and ODBC drivers from Intersolv (www.merant.com/products/datadirect/oledb
/Connect/factsheet.asp), and Oracle Objects for OLE (0040).

We've discussed how Oracle8's Net8 networking component is used to communicate with an Oracle8
database, but we haven't mentioned the Oracle Call Interface (OCI) library. We won't go into much
detail except to say that this low-level layer exposes certain procedures that the OLE DB providers and
ODBC drivers call in order to communicate with the database, in much the same way as DBLib for
SQL Server databases.

After that brief overview, it is now time to show you how to connect to an Oracle8 database using the
more popular technologies so that you can see the relative pros and cons of each in terms of feature
support, performance, and ease.

There are bound to be times when you need the ability to fetch recordsets from an
Oracle stored procedure with ADO. At thetime of writing you have no choice but to
usethe ODBC driver for Oracle or Oracle's Oracle Provider for OLE DB, both of
which will be covered later.

OLE DB Provider for Oracle

The OLE DB Provider for Oracle supports most of the Oracle8 data types:

Data Type Supported Data Type Supported
BFI LE LONG RAW Yes

BLOB NCHAR

CHAR Yes NCLOB

CLCOB NUVBER Yes

DATE Yes NVARCHAR2

FLOAT Yes RAW Yes

| NTEGER Yes VARCHAR2 Yes
LONG Yes MLSLABEL

This table shows that many of the standard data types are supported but those such as the LOB (Large
Object) and object-based extensions are not supported.

The provider is a native provider, in that it accesses the Oracle's API directly rather than through
ODBC. This provides us with generally the best performance when compared to other methods of
connecting to Oracle, but does mean that some functionality is not available.

In order to use the provider, you must set its name in the Connecti onSt ri ng property of the ADO
Connect i on object or as the Connecti onSt ri ng argument to the Open method. As with any
provider for ADO, unpredictable results can occur if you specify the name of the provider in more than
one place.

484

Oracle8 and OracleS8i

Let's start by connecting to the Oracle database using the scott username to execute two simple built-
in Oracle functions to retrieve the system date, sysdat e, and current username, user :

3 Oracle Data Access - Microsoft Internet Explorer M=l E3 I
J File Edit Miew Favortes Tool: Help |
j@.-».@ {5‘@ G D |7
Back FEanward Stop Refresh Home Search Faworites Histoy
JAgdress I@ hitp:/ Aidz/GetD ate. asp j
=
Oracle Data Access
Using 'OLE DB Provider for Oracle'
SvsDate and User Name Demo
ADO Prowvider=MSDACRA 1
Syatemn Date=%13/00 12:54:35 PIL
User=3COTT
El
|@ Done ’_’_ 25 Local intraret i

Create a new ASP script called Get Dat e. asp:

<% Option Explicit %
<HTM_>
<HEAD><TI| TLE>Or acl e Data Access</ Tl TLE></ HEAD>
<BODY>
<CENTER>
<H2>
Oracl e Data Access

Using ' OLE DB Provider for O acle'

SysDate and User Nane Denpb

</ H2>
</ CENTER>
<%
Di m obj Connecti on
Di m obj Recor dset

Set obj Connection = Server. Creat eObj ect (" ADODB. Connecti on")
W th obj Connection
. ConnectionString = "Provi der =MSDAORA; Dat a Sour ce=Or acl e8_dev; " & _
"User | D=scott; Password=tiger;"

. Open

Response. Wite "ADO Provider=" & .Provider & "
"

Set obj Recordset = .Execute("SELECT sysdate, user FROM dual ")
End Wth

We use the Connecti on object's Connecti onSt ri ng property to tell ADO how to connect to our
Oracle database before calling the Open command to attempt to connect to the database. Don't forget
that the Dat a Sour ce property, Or acl e8_dev, is the service name that we created earlier, rather than
the actual machine name - but in my case, both are actually the same value.

485

Chapter 15

The Provi der section tells ADO to use the OLE DB Provider for Oracle. We can use either
the class name of the provider, in this case MSDAORA, or the full provider name: 'OLE DB
Provi der for Oracl e'. As we want to use the scott account, we need to set the User | D
and Passwor d accordingly.

Our Oracle8 server is located on a server called Or acl e8_dev. You 'll have to change this to reflect
your own Oracle database server.

If you've not used the Wt h. .. End Wt h statement, it serves as a way to call multiple methods on a
single object without having to refer to the name explicitly every time. It makes your code easier to read
and actually runs slightly faster as the ASP processor doesn't have to do extra processing to establish the
address of the obj Connect i on object.

By calling the Open method, we should get a connection to the Oracle database. By way of a
confirmation, we write out the name of the Pr ovi der property. This shows us the name as defined in
the Registry along with any version number if there are multiple versions installed on the server.

The Execut e method returns back a Recor dset representing the records that were fetched from the
database, in this case a single record with a column containing the current system date and the current
user name. The argument passed to Execut e is the command that we want Oracle to run for us.

Notice the word dual in our SELECT statement? Oracle does not allow you to execute a SELECT
statement without an accompanying FROM clause; dual is a logical pseudo-table, available to all
accounts, provided for that purpose. It is not a physical table that you can alter.

Response. Wite "System Date=" & obj Recordset. Fi el ds("sysdate") & "
" & _
"User =" & obj Recordset ("user")

Set obj Connection = Not hi ng
Set obj Recordset = Not hi ng
%

</ BODY>

</ HTM_>

We finish off by reading the Fi el ds collection of our obj Recor dset object to get the value for the
sysdat e and user functions. In the case of the user field we've left out the . Fi el ds statement as this
is the Recor dset object's default property, though you can make your code run faster if you use it.

There's no need to navigate through the obj Recor dset, as there will only be one record returned.
With any objects that we create in our scripts, it's always a good idea to shut them down explicitly as
soon as possible using the Set ... = Not hi ng statement in order to free up server resources.

Aswe mentioned earlier, if you received the Oracle error message ORA-12545:
connect failed because target host or object does not exist then you need to
recheck the values of your host name, port number and SID that wer e entered when
your created the new service name using Net8 Easy Config.

That was a relatively easy example, so let's have a look at a more complex statement in which we return
a number of records. The scott schema comes with four sample tables that you can look at yourself.
The tables opposite represent an employee's bonus and salary tracking system:

486

Oracle8 and OracleS8i

|s=3

EMPHO
_ |Ename
0B
_|mer
_|HirEDATE
_|saL
COMM

| DEPTNO —

—c= @ |DEPTNG
DMAME
Lo

This isn't the best schema that Oracle could have used as their pre-configured sample database. The
SALGRADE and BONUS tables are not referenced by any other tables and contain no primary keys.

Table Name Purpose

DEPT Stores a list of department names
SALGRADE Stores a list of salary grades

EMP Stores a list of employees

BONUS Stores a list of employee bonuses

Our example ASP script will be using the DEPT and EMP tables to show a list of all employees sorted by
their name (later on we'll be using them in our sample application):

7} Oracle Data Access - Microsoft Intemet Explorer [_ O] %]

File Edit ‘iew Favoites Tools Help |
@_».@ﬁ‘@@@‘%v .
Back Fonward Stop Refresh Home Search Favorites History ail
| address [@] hup.//ids/ListEmployees.asp Bl
=
Oracle Data Access
Using 'OLE DB Provider for Oracle'
Emplovee List Demo
ADO Provider=MSDACRA 1
|Nurnbsr |Empleyse Job ‘Hmz Date: |Salary|Comrmss1on Department Location
7876 [sDaMS [CLERE [s123/87 [1100 RESEARCH [DALLAS
7499 [ALLEN [SATESMAN [220/81 [1600 [300 SALES CHICAGO
7698 [BLAEE [MANAGER /1781 [2850 SATES CHICAGO
7782 [CLARK |[MANAGER [6/w81 [2450 ACCOUNTING [NEW YORE.
7902 [FORD [ANALYST (12381 [3000 RESEARCH [DALLAS
7a00 [TaMES [CLERE [1ael [s50 SALES CHICAGO
[7366 [roMES [MAMAGER [4/zr81 2975 | RESEARCH [DALLAS
[7839 [RING [PRESIDENT [11/17/81 [5000 | |ACCOTNTING [NEW YORE
[7654 [MARTDV[SALESMAN 928581 (1250 [1400 [sALES [crICAGO
[7934 [MILLER [CLERE [1/2382 [1300 | [ACCOUNTING [NEW YORE,
7788 [SCOTT [aMALYST 41987 [3000 RESEARCH [DALLAS
7369 [sMITH [CLERE (121780 [800 RESEARCH [DALLAS
7844 [TURMER [SATESMAN w281 [1500 [0 SATES CHICAGO
7521 [WARD [SALESMAN 222/81 [1250 [500 SALES CHICAGO
|
&] Dane [| [Localntaret 4

487

Chapter 15

The code used to produce the previous screenshot looks like this:

<% QOption Explicit %
<HTM.>
<HEAD><TI TLE>Or acl e Data Access</ Tl TLE></ HEAD>
<BODY>
<CENTER>
<H2>
O acl e Data Access

Using ' OLE DB Provider for Oacle'

Enpl oyee Li st Denpo

</ H2>
</ CENTER>
<%
Di m obj Connecti on
Di m obj Recor dset
Di m var SQL

Set obj Connection = Server. Creat eObj ect (" ADODB. Connecti on")
Wt h obj Connection
. ConnectionString = "Provi der =MSDAORA; Data Source=Oracl e8_dev; " & _
"User | D=scott; Password=tiger;"
. Open
Response. Wite "ADO Provi der=" & .Provider & "<P>"

We start off as before by defining two variables for our Connect i on and Recor dset objects and then
connect to the database using the scott /ti ger combination. We've added a new variable, var SQL, to
hold a nicely formatted SQL statement:

var SQL = "SELECT enp. enpno, enp.enane, enp.job, enp.hiredate," & _
" enp.sal, enp.conm dept.dnane, dept.loc" & _
" FROM enp, dept" & _
" WHERE enp. deptno = dept.deptno” & _
CORDER BY enp. enane"

Set obj Recordset = .Execute(varSQ.)
End Wth

The SQL statement joins the employee table, EMP, to the department, DEPT, to return a list of
employees and their departments. Again we use the Execut e command to return back a Recor dset
of data:

Response. Wite "<TABLE BORDER=1><TR>" & _

" <TD>Nunber </ TD>" & _
<TD>Enpl oyee</ TD>" & _

" <TD>Job</ TD>" & _

" <TD>Hi re Date</ TD>" & _
<TD>Sal ary</ TD>" & _

" <TD>Commi ssi on</ TD>" & _

" <TD>Departnment </ TD>" & _
<TD>Locat i on</ TD>" & _

"</ TR>"

488

Oracle8 and OracleS8i

We use Response. Wi t e to write out the start of our table of results:

Do Wil e Not obj Recordset. EOF

Response. Wite "<TR>" & _

" <TD>" & obj Recordset ("enpno") & "</ TD>" & _

" <TD>" & obj Recordset ("enane") & "</ TD>" & _

" <TD>" & obj Recordset ("job") & "</ TD>" & _

" <TD>" & obj Recordset("hiredate") & "</ TD>" & _

" <TD>" & obj Recordset("sal") & "</ TD>" & _

" <TD>" & obj Recordset ("commi') & " </ TD>" & _
" <TD>" & obj Recordset ("dnane") & "</ TD>" & _

" <TD>" & obj Recordset ("l oc") & "</ TD>" & _

"</ TR>"

obj Recor dset . MoveNext
Loop
Response. Wite "</ TABLE>"

Now it's just a case of writing out each record by retrieving the value for each column from the Fi el ds
collection of our Recor dset object obj Recor dset and moving to the next record using the
MoveNext method. We loop through using a Do Whi | e. . . Loop that will stop as soon as it gets to the
end of the Recor dset .

Some of the records in the conmcolumn contain a null value, so we add the HTML non-breaking space
tag () to ensure that the browser draws the cell border correctly.

Set obj Connecti on = Not hi ng
Set obj Recordset = Not hi ng
%

</ BODY>

</ HTM.>

As with our previous example, it's a good idea to explicitly close our obj Connecti on and
obj Recor dset objects as soon as we've finished with them.

We've now managed to connect to an Oracle8 database using the OLE DB Provider for Oracle to
retrieve a single record of the current system date and username and a full list of employees in the
scott database's enp table. It is suggested that the OLE DB Provider for Oracle be used for the
majority of Oracle data access as it executes faster and supports Microsoft's new direction in data access
- OLE DB.

Microsoft ODBC Driver for Oracle

The Microsoft ODBC Driver for Oracle supports the same set of Oracle8 data types as the OLE DB
Provider for Oracle. When using this driver with ADO, we are actually using the OLE DB Provider for
ODBC Drivers (MSDASQL), which in turn uses the Microsoft ODBC for Oracle Driver.

Microsoft released the OLE DB Provider for ODBC (MSDASQL) so that all existing ODBC-based

applications could use the new features found in OLE DB through ADO. When connecting to any data
source using ADO, this is the default provider that is used.

489

Chapter 15

ODBC connection strings use the older DRI VER=, DSN=, Ul D=, PW\D= and SERVER= (optionally in the
place of DSN=) parameters to connect to a data source. Don't forget that there must be a valid Data
Source Name, DSN, registered through the ODBC Data Source Administrator in the Administration
Tools (or Control Panel) if you are going to use the DSN parameter.

Each time you connect to a database using a DSN, ODBC must look through the Windows Registry
in order to retrieve connection details for your DSN. There may be some performance improvements
in your application if you use DSN-less connections, as the Windows Registry is notoriously slow to
access. If you do need to use DSNs, then remember to use System DSNs rather than File DSNs as
anonymous users, which your server is more than likely to use, have access to them.

We are going to create a simple ASP script that uses some of the principles we used with the OLE DB
Provider for Oracle to show a list of departments from the scott database's dept table.

43 Oracle Data Access - Microsoft Internet Explorer [_[O]

J File Edit Miew Favorites Tools Help |
NI, W a G I
Back Famard Stop Refrezh Home Search Favortes Hiztom

J Address I@ http: /fids/ListDepartments. asp j

Oracle Data Access
Using "Microsoft ODBC for Oracle Driver'
Department List Demo

ADO Provider=MSDASQL.1

|Numb er |D epartment ‘Location

[l0 [ACCOUNTING NEW TORK
l40 [OPERATIONS BOSTON
[20 [RESEARCH | DALLAS

[0 [sarEs [CHICAGO

El
|@ Done F,ﬁ 25 Local intranet 4

The only real difference to this code is the connection string used, so we'll just show that line of code:

. ConnectionString = "Provider=MSDASQ; " & _
"DRI VER={ M crosoft ODBC for Oracle}; " & _
"SERVER=Cr acl e8_dev; Ul D=scott; PWD=tiger;"

We make use of the DRI VER property to tell MSDASQL to use the Microsoft ODBC Driver for Oracle,
SERVER points to our database server, Or acl e8_dev, and we use Ul D and PWD rather than the User | D
and Passwor d combination.

Notice that we didn't specify a DSN so we don't have to create one, and although it's not actually
necessary in this case, we've specified the name of the Provi der to use.

490

Oracle8 and OracleS8i

Oracle Objects for OLE (0040)

Oracle provides us with its own native client software that sits above the Oracle Call Interface, as
mentioned earlier, allowing us to communicate with an Oracle database using a COM/OLE component.

Oracle Objects for OLE, or OO40 as it is usually abbreviated to, allows us to execute SQL and
PL/SQL statements in a native "pass-through" format. This means we can make use of all Oracle data
types as well as additional features, such as bind variables.

Bind variables are an efficient way to execute the same SQL statement with differing parameters
without Oracle having to re-parse the statement each time. Unfortunately, it won't make that much

of a performance difference to our web page, as we will only execute the statement twice and then
close our database connection. However, this feature is ideal for client/server applications that maintain
the database connection until the application is closed. We will be discussing bind variables in the
following examples.

Unfortunately, by using OO40 we'll have to forfeit the usual methods found in ADO. However, 0040
does implement the same, or very similar methods, so the learning curve is not that steep.

Version 2.3 of 0040, which shipped with Oracle8, has the following object model:

OraClient

— OraSession

OraConnection

— OraDatabase

— OraParameter

—— OraParameterArray

— OraDynaset

L OraField

S OraSQLstmt

491

Chapter 15

You'll find that the later version, 8.1, as shipped with Oracle8i, has a similar model with a number of
extra objects:

OraSession

. OraServer

OraDatabase

— OraParameters

L OraParameter

—— OraParameterArray

— OraDynaset

L OraField

— OraMetaData

L OraMDAttribute

— OraAQ

L OraAQMsg

The table gives a brief description of each object:

Name 0040 Description
Version

OraSessi on 2.3 This is the first top-level object needed before we connect to
8.1 an Oracle database.

O aServer 8.1 Represents a physical connection to an Oracle database

server instance. The OpenDat abase function can be used to
create client sessions by returning an Or aDat abase object.

OraConnection 2.3 Returns various pieces of user information about the current
Or aSessi on object. It can be shared by many
Or aDat abase objects, but each Or aDat abase must exist in
the same Or aSessi on object.

492

Oracle8 and OracleS8i

Name 0040 Description
Version
O aDat abase 2.3 Represents a single login to an Oracle database. Similar to
8.1 the ADO Connect i on object. Or aDat abase objects are
returned by the Or aSessi on. OpenDat abase function.
OraDynaset 2.3 Similar to an ADO Recor dset object. Represents the results
8.1 retrieved by a call to the Or aDat abase. Cr eat eDynaset
function.
OraField 2.3 Represents a column of data within an Or aDynaset object.
8.1 Similar to the ADO Fi el d object of an ADO Recor dset .
Oradient 2.3 Automatically created by OO40 as needed. Maintains a list
of all active Or aSessi on objects currently running on the
workstation.
Or aPar anet er 2.3 Represents a bind variable for a SQL statement or PL/SQL
8.1 block to be executed using the Or aDynaset object. Similar
to the Par anet er object in an ADO Conmand object.
O aPar anAr r ay 2.3 Allows arrays of parameters to be set for the
8.1 O aDat abase. Par anet er s function.
O aSQLSt nt 2.3 Represents a single SQL statement. Typically used with SQL
8.1 statements that include bind variables to improve

performance as Oracle does not have to parse the statement
each time it is executed. Can be thought of as conceptually
similar to the ADO Conmand object.

Or aMet aDat a 8.1 Returns meta data to describe a particular schema such as
column names. Similar to the SQL Server DMO object
library. See the meta data example below.

O aAQ 8.1 The Cr eat eAQmethod of the Or aDat abase returns an
Or aAQobject. This provides access to Oracle's Advanced
Queuing message system that allows messages to be passed
between applications, much like MSMQ.

We are going to create a sample ASP script that executes a SQL statement to return a list of employees
for a specific department number using bind variables. This example, which is compatible with both the
2.3 and 8.1 versions of 0040, will use Or aSessi on, O aDat abase, Or aDynaset and Or aFi el ds
objects, as they are the most commonly used objects in OO40.

Using Bind Variables

Our script contains simple VBScript function, Cr eat eEnpl oyeeTabl e, declared at the bottom of the
script, to handle the refreshing of the Par anet er s collection and writing out of the HTML results table
each time.

493

Chapter 15

/] Oracle Data Access - Microzoft Internet Explorer

J File Edit Miew Favorites Tools Help |

j@.-».@ {5‘@ @@‘%v i

Back Forward Stop Fiefrezh Home Search Favortes History

JAgdress I@ hitp: #4ids/00400 emo. asp j

Oracle Data Access
Using 'O040"
Fmplovee Bind Variable Demo

OO40 Version: 8.1.6.3.6

Connect: scott

DatabaselName: Oracle®_dev

Cracle Version: Oracle? Enterprize Editon Eelease 2.0.5.0.0 - Production PLIZCL Eelease
8.0.5.0.0 - Production

Accounting Department Fmployees:

|Number |Employee |Iob |I-Ere Date |Salaxy |Commission
[7782 |CLARK MANAGER [6/9/81 [2450 |
[7239 [KING |PRESIDENT [11/17/21 [5000 |
[7934 |MILLER [CLERK [1/23/82 [1300 |

Research Department Employees:

|Number |Employee |Iob |I-Ere Date |Salaxy |Commission
7876 |aDamMS [CLERR (52387 [1100 |

[7902 |[FORD [ANALYST [12/3/81 [3000 |

[7566 [TONES |MANAGER[4/2i1 [2975 |

[7783 [SCOTT [ANALYST [4r13/87 [3000 |

[7365 [sMOTH |[CLERR [12/17/30[300 |

[]
|@ Done ’_’_ 25 Local intranet i
<% Option Explicit %
<HTM_>
<HEAD><TI TLE>Or acl e Data Access</ Tl TLE>
<BCDY>
<CENTER>
<H2>

Oracl e Data Access

Usi ng ' 040

Enpl oyee Bi nd Vari abl e Denp

</ H2>
</ CENTER>
<%
Const cAccounti ngDept Code = 10
Const cResear chDept Code = 20

Di m var Or aSessi on
Di m var Or aDat abase
Di m var Or aDynaset
Di m var SQL

494

Oracle8 and OracleS8i

We've made use of two constants to store the department code for the Accounting and Research
departments. These are passed into our obj Dat abase. Par anet er s object for each department.

Each of the remaining variables defined stores a reference to the Or aSessi on, Or aDat abase, and
Or aDynaset objects respectively. Again we use a variable called var SQL to store our nicely formatted
SQL statement:

Set var OraSessi on = Server. Createject (" O acl el nProcServer. XOr aSessi on")
Set var OraDat abase = var Or aSessi on. OpenDat abase(" Or acl e8_dev",
"scott/tiger", 0)

The only object that we have to create ourselves explicitly is the Or aSessi on object as all other objects
are created from other existing objects. We use the familiar Ser ver . Cr eat eQbj ect to create an
instance of the OO40 component whose internal Progl Dis Or acl el nProcSer ver . XO aSessi on.

The OpenDat abase function returns an Or aDat abase object, which in our case is the scott account
on the Or acl e8_dev service. OpenDat abase is called in the following way:

Set oraDat abase=or aSessi on. OpenDat abase(db_nane, connectstring, options)

Where db_nane is the service name to connect to, connect st ri ng is the standard Oracle connection
format of " user nane/ passwor d", and opt i ons is a collection of bit flags to indicate the mode in
which the database should be opened. In our case we are passing in 0 to indicate that we want the
database to be opened in the default mode, which means that any fields that we do not explicitly set a
value for using the AddNew or Edi t methods will be set to Nul | (this will incidentally override any
server column default values!), rows will be locked as soon as the Edi t method is called, and that non-
blocking SQL functionality will not be used. A non-blocking call provides the same concept as an
asynchronous ADO call in which the calling application does not have to wait until the server completes
a request before continuing.

Some client installations may cause the Oracle error " Credential Retrieval Failed"
whenever you try to connect. If thisisthe case then your client installation istrying to
use a different form of client authentication to that of the server. Client authentication
should be set to none, rather than native (NTS), so edit your sql net . or a file, located
in the samefolder ast nsnanes. or a, and replace theline

SQLNET. AUTHENTI CATI ON_SERVI CES=(NTS)
with

SQLNET. AUTHENTI CATI ON_SERVI CES=(NONE) .

Response. Wite "OMO Version:" & varOaSessi on. O PVersi onNunber & "
" &
"“Connect: " & varOraDat abase. connect & "
" & _
"Dat abaseNane: " & var OraDat abase. Dat abaseNanme & "
" & _
"Oracle Version: " & varOrabDat abase. RDBMSVer si on & " <P>"

495

Chapter 15

Just for our benefit we write out some information about the version of OO40 and the Oracle server
that we are connecting to:

var SQL = "SELECT enpno, enane, job, hiredate," & _
" sal, comi & _
FROM enp" & _
" WHERE deptno = :deptnoparani & _
CRDER BY enane"

var SQL stores the SQL statement to execute using an Oracle bind variable, : dept nopar am As we
hinted at above, using bind variables can improve the performance of data access when you have the
same SQL statement to execute, but need to alter a parameter. Each time Oracle executes a statement it
has to go through the statement to understand how it should be executed. By using the bind variable, we
can get Oracle to parse it only once. Remember, though, that this only exists for the life of your

Or aDat abase object — which should only be kept around for the life of the script and not in an ASP
Sessi on variable.

var Or aDat abase. Par anet ers. Add "dept noparani, 0, 1

Before we can tell Oracle about the bind variable we need to add it to the Or aDat abase object's
Par anmet er s collection using the Add command, which is called in this way:

Or aPar anet ers. Add Nane, Val ue, | Olype

The Nare argument is a string that represents the name of the parameter to add, and it must match that
of the bind variable defined in the SQL statement, Val ue is a vari ant, | OType indicates the direction
of this parameter:

Enumerator Value Description

ORAPARM | NPUT 1 Use as an input variable only

ORAPARM OUTPUT 2 Use as output variable only

ORAPARM BOTH 3 For variables that are both input and output

| OType is much like the adDi r ect i on enumerator used in the ADO Command object's Par aret er s
collection to set the direction of SQL parameters.

In our example we passed in a value of 0 as a default because we don't actually have a value to use and
a 1 to indicate that is for input use only.

Set var OraDynaset = var OraDat abase. Cr eat eDynaset (var SQL, &H4)

Now it's just a case of calling the Or aDat abase. Cr eat eDynaset to retrieve an Or aDynaset object.
Cr eat eDynaset is called in this way:

Set oradynaset = oradat abase. Creat eDynaset (sql _statenent, options)

Where sql _st at enent is the SQL to execute and opt i ons contains a bit flag of settings to define how
the Or aDynaset object behaves, such as whether it is updateable, or to cache data on the client. In our
case we're passing in the hex value &H4 to indicate that it should be opened in read-only mode as we
only want to display some data.

496

Oracle8 and OracleS8i

Behind the scenes, Oracle parses the statement ready for execution. It doesn't actually fetch any data
until we set the dept nopar amparameter's Val ue property in Or aDat abase. Par aret er s collection
and ask OO40 to refresh the dynaset using Or aDynaset . Ref r esh:

Response. Wite "Accounting Departnment Enpl oyees: </ B>
"
Cr eat eEnpl oyeeTabl e cAccount i ngDept Code

Response. Wite "
Research Departnent Enpl oyees: </ B>
"
Cr eat eEnpl oyeeTabl e cResear chDept Code

Here we can see our VBScript procedure Cr eat eEnpl oyeeTabl e being called to set the value for each
of the department number parameters to create a nicely formatted table, as defined below:

Set var OraDat abase = Not hi ng
Set var OraDynaset = Not hi ng
Set var OraSessi on = Not hi ng

As always, we close down all of our objects as soon as possible in order to save server resources. Now to
the Cr eat eEnpl oyeeTabl e function:

Sub Creat eEnpl oyeeTabl e(ByVal var Dept Code)

var Or aDat abase. Par anet er s(" dept nopar ant') . Val ue = var Dept Code
var Or aDynaset . Refresh

Cr eat eEnpl oyeeTabl e is passed the required department code, which it binds to the original SQL
statement's bind variable dept nopar am Each time you specify a new value for a bind variable, you
must call the Ref r esh method to fetch the new data.

Calling Ref r esh cancels all record edit operations that may have been pending through the Edi t and
AddNew methods, executes the SQL statement, and then moves to the first row of the resulting dynaset.

Response. Wite "<TABLE BORDER=1><TR>" & _

" <TD>Nunber </ TD>" & _

" <TD>Enpl oyee</ TD>" & _
<TD>Job</ TD>" & _

" <TD>Hire Date</TD>" & _

" <TD>Sal ary</ TD>" & _
<TD>Conmi ssi on</ TD>" & _

"</ TR>"

Do Wil e Not var O aDynaset. EOF

So now we create the TABLE tag and loop through the records until we come to the end of file, ECF,
exactly as we would with the ADO Recor dset . ECF property.

Response. Wite "<TR>" & _
" <TD>" & var OraDynaset. Fi el ds("enpno"). Value & _

"</ TD>" & _
<TD>" & var OraDynaset. Fi el ds("enane").Val ue & _
"</ TD>" &

497

Chapter 15

<TD>" & varOraDynaset.Fields("job").Value & _

"</TD>" & _
<TD>" & var OraDynaset. Fi el ds("hiredate"). Value & _
"</ TD>" & _
" <TD>" & varOraDynaset.Fields("sal").Value & _
"</ TD>" & _

<TD>" & var OraDynaset. Fi el ds("comm'). Val ue & _
" </ TD>" & _
"<l TR

The Fi el ds collection returns a named list of columns for the current record, which we use to create a
new table row for each record. We haven't shown it, but as with an ADO Recor dset object, the

Fi el ds property is the default value, and for a Fi el d object, the Val ue is the default so

var OraDynaset . Fi el ds("sal ") . Val ue is equal to var Or aDynaset ("sal ") . For better
performance you should use the latter.

var Or aDynaset . MoveNext
Loop
Response. Wite "</ TABLE>"
End Sub
%
</ BODY>
</ HTM.>

As with ADO, the MoveNext method moves to the next record.

Getting Meta Data

For our final look at OO40 we will use the Or aMet aDat a object found in version 8.1 to retrieve a list
of attributes for the enp table within the scott schema. As we said earlier, Or aMet aDat a can retrieve
all sorts of information about a schema, by calling the Or aDat abase object's

Descri be("schema_nane") function to return an Or aMet aDat a object. The Or aMet aDat a object
returns a collection of Or aMDAt t ri but e objects that actually describe the data found and contains the
following methods and properties:

Name Description

Count Returns the number of Or aMDAt t ri but e objects contained in the
collection.

Type The type of object described, for example ORAMD_TABLE which

enumerates to the value 1 for an Oracle table.

Attribute(pos) Returns an Or aMDAt t ri but e object at the specified position. This can
be the 0 based index or a string name, such as "Col ummLi st ".

To make things slightly complicated the Or aMDAt t r i but e object has a property called | sSMDChj ect
that returns Tr ue if the Val ue property contains yet another Or aMet aDat a object. This allows you to
recursively search through a hierarchy of Or aMet aDat a objects. If it returns Fal se then Val ue
contains a string representation of the item.

498

Oracle8 and OracleS8i

/3 Oracle Data Access - Microsoft Internet Explorer M= 3 I

J File Edit “iew Favortes Tools Help |

e ¥ QO | @ G 7

Back Fanward Stop Refresh Home Search Favoarites
J Address I@ hitp:/4ids /00 40Metal ata. asp j
=

Oracle MetaData Example
Using '‘O040"!

Columnn definition for table emp

Iame lﬁlﬁm Precision ,ﬁ
EMPNO 2 [22 [False [4 o
ENAME (1 [10 [True [0 b
TOB o [T [0 b
MGE. 2 22 True |4 ‘R
HIREDATE[12 [7 [True [0 b
SAL o P2 fTme[7 2
cormd 2 o2 ([Tre [7]
DEPTNO 2 [22 [True [2 b

Ed
@] Done [[B3 Local ntranet 7

The following code produces the screenshot shown above. We start off with the usual header:

<% ption Explicit%
<HTM_>
<HEAD><TI| TLE>Or acl e Data Access</ Tl TLE>
</ HEAD>
<BODY>
<CENTER>
<H2>
Oracl e Met aDat a Exanpl e

Usi ng ' 040

</ H2>
</ CENTER>

The cTabl eNane constant contains the name of the table that we want to describe. As usual we are
using the Or aSessi on object to hold a reference to OO40 and Or aDat abase to connect to our
Oracle8i server:

<%
Const cTabl eName = "enp"

Di m obj Or aSessi on

Di m obj Or aDat abase

Di m obj Or aMet aDat a

Di m obj OraMDAt tri but e
Di m obj Col ummLi st

Di m obj i Col Count

Di m obj Col umbDet ai | s

499

Chapter 15

obj Or aMet aDat a is used to store our top-level Or aMet aDat a object returned by the Descri be
function and obj Or aMDAt t r i but e stores the item name " Col utmLi st " from the obj Or aMet aDat a
object, which represents the list of columns in the enp table. The actual Val ue for

obj OraMDAt t ri but e is stored in obj Col unmLi st .

Set obj OraSession = CreateObj ect ("Oracl el nProcServer. XOr aSessi on")

Set obj Or aDat abase = obj OraSessi on. OQpenDat abase(" Or acl e8i _dev",
"scott/tiger", 0)

Set obj OraMet aDat a = obj Or aDat abase. Descri be(cTabl eNane)

Set obj OraMDAttri bute = obj OraMet abDat a(" Col ummLi st")

We connect to the Or acl e8i _dev service and call the Or aDat abase object's Descri be function to
return our first Or aMet aDat a object to obj Or aMet aDat a for the enp table. obj Or aMet aDat a will
contain a collection of Or aMDAt t r i but e items, so we pass in Col urmLi st to retrieve the list of
column names.

I f obj OraMDAttri bute.|sMDObj ect Then

Response. Wite "Columm definition for table " & cTabl eNane & _
"</ B><P>" & _
"<TABLE BORDER=1><TR>" & _
" <TD>Nane</ TD><TD>Type</ TD><TD>Si ze</ TD>" & _
"<TD>l sNul | </ TD><TD>Pr eci si on</ TD>" & _
"<TD>Scal e</ TD>" & _
"</ TR>"

Set obj Col umLi st = obj OraMDAttri bute. Val ue

Even though it's not strictly necessary with this example, we check the | SMDObj ect property to see if
the Val ue property contains another obj Met aDat a object. In our case, it will always be Tr ue, since we
asked for the list of column names, which is another obj Met aDat a object.

| sSMDObj ect isaproperty soif you try to call it asa function by adding () totheend
you'll get runtime error 'Object doesn't support this property or method'.

To make the code easier to read and run quicker we transfer the Val ue property into a new variable
obj Col ummlLi st :

For i Col Count = 0 To obj Col ummLi st. Count - 1
Set obj Col umDet ai | s = obj Col ummLi st (i Col Count). Val ue
Response. Wite "<TR>" & _

"<TD>" & obj Col umbDet ai | s(" Nanme") & "</ TD>" & _
"<TD>" & obj Col umbDet ai | s("DataType") & "</TD>" & _
"<TD>" & obj Col umbDet ai |l s("DataSi ze") & "</TD>" & _
"<TD>" & obj Col umbDetails("IsNull") & "</ TD>" & _
"<TD>" & obj Col umbDetail s("Precision") & "</ TD>" & _
"<TD>" & obj Col umbDet ai |l s(" Scal e") & "</ TD>" & _
"</ TR>"
Next
Response. Wite "</ TABLE>"
End | f

500

Oracle8 and OracleS8i

Now it's just a case of moving through the zero-based collection of column details and writing out the
value for each item. We finish off by shutting down our objects:

Set obj Col umbDetails = Nothi ng
Set obj Col umLi st = Not hi ng

Set obj OraMDAttri bute = Nothi ng
Set obj OraMet aData = Not hi ng
Set obj OraDat abase = Not hi ng
Set obj OraSessi on = Not hi ng

%

</ BODY>

</ HTM.>

That covers our introduction into the common objects you'll come across in 0040. O040 offers a
rather flexible approach to connecting to an Oracle database and also provides us with additional
PL/SQL functionality not available through ADO, such as the use of input arrays for stored procedures.

So, which one should you use in your ASP applications? Unfortunately, there is no simple answer. Each
method claims to be faster than the next whilst providing support for additional functionality. It really
does pay to try each of the methods in your own environment before committing to any particular one.

An Overview of PL/SQL

We've shown you a number of techniques available to connect to an Oracle database. Now we shall
provide a quick overview of Oracle's own procedural extensions to SQL.

This section doesn't aim to be a PL/SQL bible. Instead, we'll cover some of the main differences
between PL/SQL and standard ANSI SQL.

The "PL" in PL/SQL is short for Procedural Language. It is an extension to SQL that allows you to
create PL/SQL programs that contain standard programming features such as error handling, flow-of-
control structures, and variables, all allowing you to manipulate Oracle data. By itself, SQL does not
support these concepts.

Block Structure

A PL/SQL program consists of any number of blocks or sections of code. In our ASP scripts we can
create any number of chunks of code to execute on the server using the <% . . % tags. This is
similar to PL/SQL, where a set of statements can be grouped logically together as part of a larger
set of instructions:

DECLARE Tot al Sal NUVBER(5) ;
BEG N
SELECT SUM Sal) | NTO Tot al Sal
FROM enp
WHERE enane LIKE ' S% ;

dbrms_out put. put _line('total Salary=" || Total Sal);
| F Total Sal < 10000 THEN
UPDATE enp SET
Sal = Sal * 1.1
WHERE ename LIKE ' S% ;
END | F;

501

Chapter 15

COW T,

EXCEPTI ON
VWHEN NO_DATA_FOUND THEN
dbns_out put. put _Iine(' No records found."');
WHEN OTHERS THEN
dbns_out put . put _I i ne(SQLERRM ;
END;

A PL/SQL block has three distinct sections:

O Declarations
O Statements

O Handlers

They are defined in the following way:

[DECLARE decl ar ati ons]
BEG N

statement s

[EXCEPTI ON handl er s]
END;

The declarations section contains any variables or constants that are going to be used within the
st at enent s section. You can have any number of statements to execute, but if an error occurs in
any of them, processing will stop and execution will move to the exception section for trapping, if
any are defined.

In above example we declare Tot al Sal as a variable in the declarations section:
DECLARE Tot al Sal NUMBER(5) ;

All of the remaining code up to the EXCEPTI ONline forms the st at enment s section, followed by two
exception handlers: NO_ DATA_FOUND and OTHERS.

When you declare an exception handler you must tell Oracle which one of the in-built exceptions you
want to trap, such as ZERO DI VI DE. In our case we've trapped NO_DATA_FOUND, which is raised when
an empty result set is retrieved, and OTHERS, which is a catch-all handler that will trap any other
exceptions that you have not explicitly named. You can have any number of exception handlers and
you can also set up your own exception types, but that is beyond the scope of this chapter.

Once an exception has been trapped you cannot issue the equivalent to a VBScript RESUME NEXT as the
PL/SQL program will exit at the last line in the exception handler. This is somewhat different to the
operation of SQL Server's T-SQL in which you can check the value of @3Er r or after any statement,
provided that the error was of a trappable nature.

The dbns_out put . put _| i ne(" No records found. "); statement allows us to briefly mention
PL/SQL debugging. dbms_out put is a built-in Oracle Package (a package is a way to group together
collections of stored procedures) that can be used to send messages to the console. In order to actually
see these messages you must execute the SET SERVEROUTPUT ON; statement from within the SQL*Plus
SQL editor. Each call to dbns_out put . put _I i ne will write out the string message passed to it.

502

Oracle8 and OracleS8i

Oracle usesthe/ character to mark the end of a block of SQL to execute within
SQL*Plus.

Variable Declaration

At the start of a PL/SQL block you must define any variables that are to be used, after the DECLARE
statement. You can use any of the standard Oracle data-types such as NUMBER, VARCHAR? or any
PL/SQL data-type, such as BOOLEAN. It is just a case of defining the variable name followed by the data-
type and using a semi-colon between multiple declarations:

DECLARE Tot al Bonus NUMBER(6) ;
BonusPai d BOOLEAN,

For a full list of Oracle data-types check out
http://technet.us.oracle.com/doc/server.804/a58227/ch6.htm#649

Assigning Values to Variables
In ASP we use the = statement to assign a value to one of our variables. In PL/SQL it is slightly
different, in that we must use : =.
Sal ePrice := (ProductPrice / 100) * Sal esTax;

If we are returning a value from a database table or system function, then we use the | NTOstatement:

SELECT SUM Quantity) INTO |ItensOrdered FROM Or der Basket ;

Conditional Flow of Control

We use the | f. .. Then. .. El se construct to control the execution flow of our ASP scripts. PL/SQL
also supports this construct in a similar format:

| F Sal eCount > 10 AND Sal eCount < 20 THEN
UPDATE enp SET sal = sal * 0.3;

ELSI F Sal eCount = 5 THEN
UPDATE enp SET sal = sal * 0.2;

ELSE
UPDATE enmp SET sal = sal * 0.1;

END | F;

Surprisingly, PL/SQL doesn't yet provide support for the CASE statement.

Looping Flow Control

To loop through a section of code, PL/SQL supports a number of LOOP statements. The first is similar
to the VBScript For. . . Next statement:

FOR countervar IN start..end LOOP
statenments to execute
END LQOOP;

503

Chapter 15

Where count er var is the counter variable, st art is the initial starting value and end is the final
value. For example:

FOR i nt Counter IN 1..5 LOOP
I NSERT | NTO Or der Li ne(| D)
VALUES(Or der Li nel D. NEXTVAL) ;
END LOCP;

The equivalent loop in VBScript would be:

FOR intCounter = 1 To 5
Response. Wite "Val ue=" & intCounter
NEXT

The WHI LE. . . LOOP allows us to execute a section of code until a certain condition is true, just as we do
with the Do. . . Loop structure in ASP:

WH LE Tot al Bonus < 10000 LOCOP
SELECT Bonus, Enpl D | NTO EnpBonus, MyEnpl D

FROM enp
WHERE Enpl D <> MyEnpl D;
Tot al bonus : = Tot al Bonus + Bonus;
Recor dCount := RecordCount + 1;
END LOOP;

Of course, there's a lot more to PL/SQL than that. PL/SQL is like any programming language with
many constructs, statements and functions, but these are the typical building blocks that you will come
across in any PL/SQL program.

Oracle Packages

We covered stored procedures a few chapters ago, so now we'll take a quick look at Oracle Packages.
An Oracle package serves as a way to group procedures and functions into common groups typically
based upon their functionality. A package has two sections: the specification that contains a definition of
any objects that can be referenced outside of the package, and a body that contains the implementation
of the objects. The specification section must be declared first:

PACKACE package_nane

IS
{variable and type decl arations }
{cursor decl arations}
[modul e speci fications]

END {package_nane};

For example:

CREATE OR REPLACE PACKAGE Enpl oyee_pkg
AS

PROCEDURE Get Enpl oyeeNane(i _enpno IN NUMBER,

0_enane QUT VARCHAR2) ;
END Enpl oyee_Pkg;

This defines a package called Enpl oyee_pkg that contains a single stored procedure called
Get Enpl oyeeAge.

504

Oracle8 and OracleS8i

The package body contains the actual implementation of the procedures within the package.
This effectively allows us to hide procedures inside the package by not declaring them in the
package specification:

PACKAGE BODY package_nane
IS
{variable and type decl arations}
{cursor specifications - SELECT statenents}
[modul e speci fications]
BEG N
[procedur e bodi es]
END {package_nane};

The specification for our Enpl oyee_pkg could look like this:

CREATE OR REPLACE PACKAGE BCODY Enpl oyee_pkg

AS
PROCEDURE Cet Enpl oyeeNane(i _enpno IN NUMBER,
o_enane QUT VARCHAR2)
1S
BEG N

SELECT enane
I NTO o_enane
FROM enp
WHERE enpno = i _enpno;
END Cet Enpl oyeeNane;

END Enpl oyee_pkg;

To call the Get Enpl oyeeNane procedure within Enpl oyee_pkg from ASP we use must prefix the
stored procedure name with the package name. We'll be covering the execution of stored procedures in
much more detail in the next section:

Wt h obj Comrand
. CommandText "{call Enpl oyee_pkg. Get Enpl oyeeNane(?, ?)}"
. CommandType = adCndText
. Paraneters(0).Directi on = adPar am nput
. Paranet ers(0). Val ue = var EnpNo
. Paraneters(1).Direction = adPar anCut put
. Execut e
Response. Wite "Nane=" & .Paraneters(1). Val ue
End Wth

Now that we've had a brief look at Oracle packages we can use some of their features in the final section
in this chapter, when we come to retrieving ADO resultsets from an Oracle stored procedure. Before we
do that, let's create a sample application that uses a number of stored procedures to perform common
data-entry actions.

A Sample Oracle ASP Application

We are going to bring together all of the concepts discussed so far into a small ASP application based
around the scott database schema. This application will show a list of employees from the enp table
and allow the user to perform the usual data-entry procedures:

O Create a new employee

O Edit an existing employee

O Delete an employee

505

Chapter 15

To implement this application we will be using four ASP script files, an include file, and the
gl obal . asa file. The include file is an ADO helper file that we have created ourselves called
ADOFunct i ons_i nc. asp used to create our database connections as needed.

1t is often a good idea to rename your included ASP files from . i nC to . asp to prevent
unauthorized people from simply opening them in a browser. We ve done this with

ADOFunct i ons_i nc. asp as it contains a username and password which we don't want people
to have access to. I've kept the _i nc suffix so that I know it's an include file.

We will be retrieving lists of data using simple SELECT statements whereas the add, edit, update and
delete functionality will be provided by four Oracle stored procedures. This will let us examine how we
go about calling Oracle stored procedure using | NPUT and QUTPUT parameters with the aid of the
Microsoft OLE DB Provider for Oracle.

1t is notoriously difficult to retrieve an ADO Recor dset from an Oracle stored procedure. Oracle
simply does not allow us to execute a SELECT statement from within stored procedure without
assigning the returned values to a PL/SQL variable using the | NTO keyword. There is a way to
achieve this functionality with ADO using PL/SQL tables or by using reference cursors. In the
next section, we will be covering the retrieval of an ADO Recor dset from Oracle stored
procedures using PL/SQL tables and then we'll look at doing the same thing using reference cursors
and a PL/SQL package.

One word of warning though, in order to concentrate on the Oracle fundamentals, we won't be using
any DHTML features, so the screens do look rather bland!

global.asa

We won't use gl obal . asa to handle application and session events, but we will use it to add a
reference to the ADO type library to all of our ASP scripts. This will allow us to use the constants such
as adCndText for our ADO Command object. Enter the following line into gl obal . asa:

<!-- METADATA TYPE="TypeLi b"
FI LE="C:\ Program Fi | es\ Cormon Fi | es\ Syst eml ado\ nsado15.dl|" -->

This uses the METADATA tag to include a TYPELI B file from the location specified. This is the default
location into which the ADO library is located, but you should update it to reflect your own
installation if it is different. By adding this line we can make use of all of the standard ADO constants
and enumerators.

Traditionally, ASP developers would include the Microsoft ADO include file, ADOVBS. i nc, in
order to refer to the ADO constants. This would have to be done on every ASP script and is
potentially difficult to support. By using the NETADATA tag you only have to declare it once which
is faster for your web server.

ADOFunctions_inc.asp

This include file is used in all of our ASP scripts that need to connect to the database. It is much better
to put commonly used code into a single include file and reference that in each of our pages, as there
would be only one place in which we need to change the username and password if we ever needed to.

506

Oracle8 and OracleS8i

So create a new folder called i ncl udes and add a new file called ADOFuncti ons_i nc. asp containing
the following code:

<%
Functi on Get DBConnecti on()
Di m obj Connecti on

Set obj Connection = Server. Creat eQbj ect (" ADODB. Connect i on")
Wt h obj Connection
. ConnectionString = "Provider =MSDACRA; " & _
"Data Source=0Oracl e8_dev; " & _
"User | D=scott; Password=tiger;"
. Open
End Wth

Set Get DBConnection = obj Connecti on
End Functi on
%

The Get DBConnect i on function simply returns an ADODB. Connect i on object which points to our
Oracle database using the scott account.

Default.asp

Our home page, Def aul t . asp, displays a list of all employees from the enp table using a SELECT
statement ordered by name. This page allows the user to create a new employee record by clicking the
create employee link, delete an employee by pressing the Delete link, or edit an employee by clicking
the employee's name. Both the edit and add employee link go to the Edi t Enp. asp page.

3 Select an Employee - Microsoft Internet Explorer

J File Edit “iew Fawaortes Tool: Help

J@.».@ﬁ‘@@ v

Bacl Famnward Stop Riefrezh Home Search Fawvaiites

| Address [ntisids/deft asp =l

Select an Employee

Select an employee from the list or createem}g 103 e,

|Employee ‘Job ‘Sa.la.ry |Deparbment |Locat10n |

[aDans [CLERR 1100 [RESE4RCE [DALLAS [Delete
|ALLEN [SATESMAN 1600 [SALES [CHICAGO |[Delete
BLAEE [MAMNAGEER 2850 [SALES [CHICAGO |[Delete

[CLARE [MANAGER 2450 [ACCOTNTING NEW YORK [Delete
FORD [ANALYST 3000 [RESEARCH |DALLAS |Delete
[HALES |DEVELODER/[10000|RESEARCH |[DALLAS [Delete
[HILLS |TESTER |[1000 |RESEARCH |[DALLAS [Delete

[MARTIN [SALESMAN 1250 [SALES [CHICAGO [Delete
[MILLER [CLERK 1300 [4CCOUNTING [NEW YORXK [Delete
[3COTT [ANALYST 3000 [RESEARCH |DALLAS [Deleie
|sMITH |CLERR 300 [FESEARCH [DALLAS [Delete
[TURMER[S4TESMAN 1500 [SALES [CHICAGO |Delete
[WARD [SATESMAN 1250 [SALES [CHICAGO |Delete

[

|@ l_l_l_!'!'i Local intranet 4

507

Chapter 15

So let's have a look at the ASP code behind this page:

<% Option Explicit
Response. Expires = 0 %
<I-- #include file="includes/ ADOFunctions_i nc. asp" -->
<HTM_>
<HEAD>
<META HTTP- EQUI V=" Pr agma" CONTENT="no-cache">
<TI TLE>Sel ect an Enpl oyee</ Tl TLE>
</ HEAD>
<BODY>
<CENTER><H2>Sel ect an Enpl oyee</ H2></ CENTER>
Sel ect an enpl oyee fromthe |ist or
creat e enpl oyee</ A>. <P>

As usual we start off with the Opti on Expl i cit statement so that we must declare all variables and
constants used in our code. We don't want this page to be cached by the browser so that any amended
records are displayed each time the page is shown. We achieve this using Response. Expi res =0 to
tell the browser that this page expires immediately.If your site is going to be accessed by users in
different time zones then it's a good idea to actually set this to a large negative number.

The line <META> tag is used to tell any proxy servers that they should not cache this page for the
same reason.

You'll notice this is the first time that we include our ADOFunct i ons. i nc using the
#i ncl ude directive.

<%

Di m obj Recor dset
Di m var SQL

Di m var EnpNo

var SQL = "SELECT enp. enpno, enp.enane, enp.job, " &
" enp. sal, dept.dnane, dept.loc" & _
" FROM enp, dept" & _
' WHERE enp. deptno = dept. deptno" & _
ORDER BY UPPER(enp. enane) "
Set obj Recordset = Get DBConnection().Execut e(varSQ.)

Response. Wite "<TABLE BORDER=1><TR>" & _
" <TD>Enpl oyee</ TD>" & _
" <TD>Job</ TD>" & _
" <TD>Sal ary</ TD>" & _
" <TD>Depart nent </ TD>" & _
" <TD>Locati on</ TD>" & _
" <TD> </ TD>" & _
"</ TR>"

The obj Recor dset variable stores the result of our SELECT statement executed by calling the
Get DBConnect i on function to return an ADO Connect i on.

508

As with SQL Server, Oracle also supports table name aliases that can be used for long or duplicated
tables, such as:

SELECT EnpHol . Nane
FROMEnNpI oyeesOnHol i day EnpHol
WHERE EnpHol . Depart nent =1

Oracle8 and OracleS8i

Now we fill out the table with the data:
Do Wil e Not obj Recordset. EOF
var EnpNo = obj Recordset . Fi el ds("enpno")

Response. Wite "<TR>" & _
" <TD>" & _
obj Recordset ("enane") & "</ A></TD>" & _

" <TD>" & obj Recordset("job") & "</ TD>" & _

" <TD>" & obj Recordset("sal") & "</ TD>" &
<TD>" & obj Recordset ("dname") & "</ TD>" &

" <TD>" & obj Recordset("loc") & "</ TD>" &

" <TD><A HREF=j avascri pt: del et eEnpl oyee("

var EnpNo & "); >Del et e</ A></ TD>" & _

"</ TR>"

o |

obj Recor dset . MoveNext
Loop
Response. Wite "</ TABLE>"

We navigate through the records contained in the Recor dset object, creating a table row for each
employee. We cache the employee number as it is used as part of the URL for the hyperlink to
Edi t Emp. asp.

Set obj Recordset = Not hi ng
%

<SCRI PT>
function del et eEnpl oyee(EmpNo) {
if (window. confirn("Are you sure you want to del ete enpl oyee?") == true)

wi ndow. | ocati on = "Del et eEnp. ASP?EnpNo=" + EnpNo;
}

}

</ SCRI PT>
</ BODY>
</ HTML>

We finish by closing off the ASP script and defining the local JavaScript function del et eEnpl oyee.
This function uses the wi ndow. conf i r mfunction to confirm whether the record should be deleted. If
Yes, then the employee delete script, Del et eEnp. asp is called.

DeleteEmp.asp

This page simply calls an Oracle stored procedure, enp_Del et e, passing in the employee number so
that it can be deleted from the enp table.

We've covered stored procedures earlier in this book, so we'll just explain the important parts of this
new procedure. This stored procedure doesn't come as part of the default database, so we are going to
create it ourselves. Using SQL*Plus, or your preferred Oracle editor, you will need to connect to the
scott account and execute the following SQL to create the new procedure:

CREATE OR REPLACE PROCEDURE enp_Del et e
(i _enmpno | N NUVBER)
AS
BEG N
DELETE
FROM enp
WHERE enpno = i _enpno;
END;

509

Chapter 15

As you can see, it is a very simple procedure that takes one input parameter, i _enpno, and deletes the
record with the corresponding employee number from the enp table. We use the | N statement to tell
Oracle that this parameter is for input only. You must tell Oracle if you want the value of parameters to
be updated as the procedure exits, using the QUT statement, in exactly the same way that you should use
the ByVal and ByRef statements in your own ASP procedures. I tend to prefix the name of each
parameter with an i _ or o_ to denote the direction. You can also specify a parameter as being both I N
and OUT but that's not a recommended practice.

So jumping back to Del et eEnp. asp, we have the following code:

<% Option Explicit
Response. Buf fer = True
%
<!-- #include file="includes/ ADOFunctions_inc.asp " -->
<HTM_>
<%
Di m obj Command
Di m var EnpNo

var EnpNo = Request. QueryString("EnpNo")

Set obj Command = Server. Creat eCbj ect (" ADCDB. Command")
Set obj Cormand. Acti veConnecti on = Get DBConnecti on()

This time we are using the ADO Conmand object to execute our stored procedure because we need to
get at the parameters that make up this stored procedure. This is more important when you want to
retrieve the value of output parameters, as they are only accessible from the Command object's
Par anmet er s collection rather than a Recor dset .
Wth obj Comrand
. CommandText = "{call enp_Delete(?)}"
. CommandType = adCndText
. Par anet ers(0). Val ue = var EnpNo
. Execut e()
End Wth

Set obj Command = Not hi ng
Response. Redirect "defaul t.asp"
%

</ HTM.>

We use the CommandText property to tell the Conmand object the SQL statement to execute using the
{cal | procname} syntax. Each ? refers to a parameter to this stored procedure and can be referenced
in the Command object's Par amet er s collection - starting from 0. We simply set the first and only
parameter to that of the employee number passed in through the URL and then run the procedure using
the Execut e function.

Finally, we redirect the user back to our home page, def aul t. asp.
Another approach could have been to open a new pop-up window to confirm the delete, which
would have then refreshed def aul t . asp using the JavaScript Wi ndow. opener property, if the
delete was successful. If the delete operation failed, for any reason, the pop-up window could have
stayed open displaying the error message that was returned.

510

Oracle8 and OracleS8i

EditEmp.asp

This page allows existing employee's records to be updated or new ones to be added. If this is an

existing employee record, we will be passed the employee number as part of the URL. If there is no

employee number, then the page assumes that the user wants to add a new employee record.

43 Employee Details - Microzoft Internet Explorer

J File Edit “iew Fawoites Tool: Help

J<:=.->.@ fal

Back Earward Stop Fefrazh Haormne

Q

Search

| Address [&] hitp://ids E ditEmp ASPIEmpMo=7433

Emplovee Details

Name: [ALLEN

Job: [SALESMAN
Ianager: Im
Salary [160

Department: | SALES =]

Savel Resetl Cancel |

|@ Dione ’_I_ =5 Local intranet

i
Z

This page uses a stored procedure, enp_Cet Dat a, to return the fields for this employee through a

number of output parameters, so you'll need to create the following stored procedure:

Remember that with Oracle, we cannot simply execute a SELECT statement inside a stored

procedure to return some records as we can with SQL Server!

CREATE OR REPLACE PROCEDURE enp_Get Dat a

(i _enpno IN NUMBER
o_enane QUT VARCHARZ,
o_j ob QUT VARCHARZ,
o_ngr QUT NUMBER
o_sal QUT NUMBER,
o_deptno QUT NUMBER)
AS
BEG N

SELECT enane, job, nor,
sal, deptno
I NTO o_enane, o_job, o_nyr,
o_sal, o_deptno
FROM enp
WHERE enpno = i _enpno;
END;

511

Chapter 15

This time we have only one input parameter and five output parameters that are used to store the
employee details using the SELECT. . . | NTOstatement to transfer the values.

The ASP script has to do quite bit of work to display this page. It populates the list of departments and

managers using a custom VBScript procedure that writes out a list of OPTI ON statements based on a
Recor dset of data, as we'll see shortly.

<% QOption Explicit %

<l-- #include file="includes/ ADOFunctions_inc.asp " -->
<HTM>
<HEAD>
<TI TLE>Enpl oyee Detai |l s</ Tl TLE>
</ HEAD>
<BODY>
<CENTER><H2>Enpl oyee Det ai | s</ H2></ CENTER>
<%

Di m obj Connecti on

Di m obj Conmmand

Di m obj RSDepart ment s
Di m obj RSManager s

Di m var EnpNo
Di m var ENane
Di m var Job
Di m var Myr
Di m var Sal ary
Di m var Dept No

We use a separate Recor dset object to store the list of departments and managers so that we can
populate the SELECT list in the correct place. I always find it easier to transfer the record values to local
variables in one place.

On Error Goto Next
Set obj Connection = Get DBConnecti on()

I f Request.QueryString("EnpNo") = "" Then
var EmpNo = 0

We create a database connection using Get DBConnect i on, and if there is no employee number passed
in the URL, we set the employee number to zero. If the user clicked on an employee's name, we would
have been passed the correct employee number.

For new employees, we use an Oracle Sequence to generate the new employee number, which we'll
cover shortly.

El se
var EnpNo = Request. QueryString("EnpNo")
Set obj Conmand = Server. Creat eObj ect (" ADODB. Conmand")
Set obj Conmand. Acti veConnecti on = obj Connecti on
W th obj Conmand
. ConmandText = "{call enp_GetData(?, ?, ?, ?, ?, ?2)}"
. ConmandType = adCndText
. Paranet ers(0). Val ue = var EnpNo
. Execut e()

512

Oracle8 and OracleS8i

If we have

an employee number then we need to create a Command object and specify the

enp_Cet Dat a stored procedure. This time we have six parameters with the first one being the
input parameter, the employee number, and the remaining five output parameters storing the
employee's details.

var ENarre = . Paraneters(1)
var Job = . Paraneters(2)
var Mgr = . Paraneters(3)
var Sal ary = . Paraneters(4)
var Dept No = . Paraneters(5)
End Wth
End | f

Once we've called the Execut e function, each of the Par aret er s items will contain our employee's
fields so it's just a case of transferring them to our local variables.

Set obj RSDepartnments = obj Connecti on. Execute(_

"SELECT deptno, dnane FROM dept ORDER BY dnane")

Set obj RSManagers = obj Connecti on. Execute(_

"SELECT enpno, enanme FROM enp ORDER BY enane")

Set obj Command = Not hi ng
Set obj Connecti on = Not hi ng

We use our connection object, obj Connect i on, to retrieve a list of departments and managers for
our SELECT lists and then shut down the Command and Connect i on objects as soon as we've finished

with them.

Sub Popul at eSel ect Opti ons(ByVal obj Recordset, ByVal varCurrentl D)

Di m var HTML
Di m var Sel ect ed

obj

Do

Recor dSet . MoveFi r st

Whi | e Not obj Recordset. EOF

If CLng(varCurrentlD) = d ng(objRecordset.Fields(0)) Then
var Sel ected = " SELECTED'

El se
var Sel ected = ""

End | f

var HTML = varHTM. & "<OPTI ON VALUE=" & obj Recordset. Fiel ds(0) & _
var Sel ected & ">" & obj Recordset. Fields(1) & "</ OPTI O
obj Recor dset . MoveNext

Loop
Response. Wite var HTM.
End Sub

%

Popul at eSel ect Opti ons is a general-purpose procedure that is passed a Recor dset of data and the
ID of the default item to select. Its purpose is to navigate through each record and create a collection of
HTML OPTI ON tags using the field at position 0 as the ID and field 1 as the text to display. If this was a
full-blown application we'd probably put this function in an include file so that other pages could use its
functionality, but as this is an example, we'll leave it in the ASP.

513

Chapter 15

<FORM ACTI ON=" Edi t Enp_HND. ASP?EnpNo=<%var EnpNo%" METHOD="PCST" >
<TABLE>
<TR>
<TD>Nane: </ TD>
<TD><I NPUT NAME="var ENane" VALUE="<%var ENane%" ></ TD>
</ TR>
<TR>
<TD>Job: </ TD>
<TD><I NPUT NAME="var Job" VALUE="<%var Job%" ></ TD>
</ TR>

Now we can define the FORMthat allows the user to enter the employee details. Notice that we append

the employee number, which can be zero for new employee records, to the query string for the form
action handler, Edi t Enp_HND. asp.

<TR>
<TD>Manager : </ TD>
<TD><SELECT NAME="varMgr" S| ZE="1">
<%
Cal | Popul at eSel ect Opti ons(obj RSManagers, var Myr)
Set obj RSManagers = Not hi ng
% </ SELECT></ TD>
</ TR>

This is the first time that we call Popul at eSel ect Opti ons to create our list of OPTI ON tags. We

already have the <SELECT> tag so Popul at eSel ect Opt i ons will generate the corresponding list of
<OPTI ON> tags for each record in obj RSManagers.

<TR>
<TD>Sal ary: </ TD>
<TD><I| NPUT NAME="var Sal ar y"
VALUE="<% var Sal ary %" ></TD>
</ TR>
<TR>
<TD>Depart nent: </ TD>
<TD><SELECT NAME="var Dept No" S| ZE="1">
<%
Cal | Popul at eSel ect Opti ons(obj RSDepart nents, var Dept No)
Set obj RSDepartments = Not hi ng
%
</ SELECT></ TD>
</ TR>
<TR>
<TD></ TD>
<TD>
<I NPUT TYPE="SUBM T" VALUE="Save">
<I NPUT TYPE="RESET" VALUE="Reset">
<I NPUT TYPE="BUTTON' VALUE="Cancel "
oncl i ck="docunent .| ocation. href="/";">
</ TD>
</ TR>

</ TABLE>
</ FORM>
</ BODY>
</ HTM_>

514

Oracle8 and OracleS8i

We finish off by completing the input form, again using Popul at eSel ect Opt i ons to show a list of
departments, and adding a Submit to submit the form, a Reset button to clear any edits and a Cancel
button to take the user back to the home page.

EditEmp_HND.asp

This page is the form handler that is called when the user submits the data-entry form. It calls
the parameterized stored procedure enp_Updat e to update an existing record or add a new one
using enp_Add.

3 Update Employee Details - Microsoft Internet Explorer
J File Edit ‘iew Favoites Tools Help
& oD AN BNET B RS R
Back Frriand Stop Refresh Home Search Favortes Histary tail
JAgldreSS I@ httpe/fids/E ditE mp_HMD.ASPYEmpho=7300 j ﬁGo |J Links
[~
Update Employee Details
Eecord for employes TAWES has been updated.
Home
a
|@ Dane l_ l_ E‘g Loeal intranet A

Again, we are going to create these new stored procedures, so jump back to your SQL editor and
execute the following lines:

CREATE OR REPLACE PROCEDURE enp_Updat e

(i _enpno I'N NUMBER,
i _enane IN VARCHARZ,
i _job IN VARCHARZ,
i _mgr I'N NUMBER,
i _sal I'N NUMBER,
i _dept no I'N NUMBER)
AS
BEG N
UPDATE enp SET
enane = i _enane, job =i _job,
ngr = i_ngr, sal =i _sal,
deptno = i _deptno
WHERE enpno = i _enpno;
END;

Now that we've created the stored procedure for updates, we need to create an Oracle Sequence object
before we create the enp_Add procedure. A sequence is an object that generates sequential numbers
that we can use as primary keys for our employee number column. Oracle does not support the

| DENTI TY column that you would use in SQL Server so we must create a Sequence object to generate
the numbers for us. Sequences are created separately from the table that they are created for, so if a
table happens to be deleted (that is dropped) the sequence object will still exist. Each time you request
the next number in the sequence using the NEXTVAL property, the sequence will automatically update
itself irrespective of the table to column that it was originally created for.

515

Chapter 15

So from your SQL editor execute the following statement to create the sequence:

CREATE SEQUENCE enpno_seq START W TH 9000;

The sequence is called enpno_seq and starts at 9000. The reason why I've decided to start at 9000 is
because the enp table already contains some records and, in my case, the largest employee number was
7934, so I want to start at a number greater than 7934. A sequence has a number of properties that you
can call, but NEXTVAL is the one we need to get the next number in the sequence.

Now that's done we can create the add stored procedure by running the following SQL:

CREATE OR REPLACE PROCEDURE enp_Add

(i _enane IN VARCHARZ,
i _job IN VARCHARZ,
i _ngr I'N NUMBER,
i _sal I'N NUMBER,
i _dept no I'N NUMBER)
AS
BEG N
I NSERT | NTO enp(enpno,
enane, job, ngr,
sal, deptno)
VALUES(enpno_seq. NEXTVAL,
i _enane, i_job, i_nor,
i_sal, i_deptno);
END;

The ASP script is relatively simple:

<% Option Explicit %

<l-- #include file="includes/ ADOFunctions_inc.asp " -->
<HTM_>
<HEAD>

<TI TLE>Updat e Enpl oyee Detail s</ Tl TLE>
</ HEAD>
<BODY>

<CENTER><H2>Updat e Enpl oyee Det ai | s</ H2></ CENTER>
<%

Di m obj Conmand

Di m var EnpNo
Di m var ENane
Di m var Job
Di m var Myr
Di m var Sal ary
Di m var Dept No

We will be using a Conmand object in order to set the stored procedure's parameters and local variables
to store the value from the submitted form.

Wth Request

var EmpNo = . QueryString("EnpNo")

var ENane = . Form("var ENane")

var Job = . Form("varJob")

var Mgr = . Form("varMyr")

var Sal ary = . Form("var Sal ary")

varDept No = . For n("var Dept No")
End Wth

516

Oracle8 and OracleS8i

We transfer the form fields into local variables.

Set obj Conmand = Server. Creat eObj ect (" ADCDB. Command")
Set obj Conmand. Acti veConnecti on = Get DBConnecti on()

If varEmpNo <> 0 Then

W't h obj Comrand
. CommandText = "{call enp_Update(?, 2, ?2, 2?2, ?2, ?2)}"
. CommandType = adCndText
. Paranet ers(0). Val ue = var EnpNo
. Paraneters(1).Val ue = var ENane

. Paranet ers(2). Val ue var Job

. Paraneters(3). Val ue = var Myr

. Paraneters(4).Value = Clnt(varSal ary)
. Paranet ers(5). Val ue = var Dept No

. Execut e()

Response. Wite "Record for enployee " & varEName & _
has been updated. "
End Wth

If we have employee number then it's just a case of calling the enp_Updat e stored procedure and pass
in each of the values.

El se
Wt h obj Comrand

. CommandText = "{call enp_Add(?, ?, ?, ?, ?)}"
. CommandType = adCndText
. Paranet ers(0). Val ue = var ENane
. Paraneters(1). Val ue var Job
. Paraneters(2). Val ue = var Myr
. Paraneters(3).Value = Clnt(varSal ary)
. Paranet ers(4). Val ue var Dept No
. Execut e()

Response. Wite "Record for enployee " & varEName & " has been added. "
End Wth
End | f

Set obj Command = Not hi ng
%
<pP>
Home</ A>
</ BODY>
</ HTM_>

In the case of a new record, we call the enp_add stored procedure and pass in the new
employee's details.

That concludes our brief ASP sample application based on the scott employee data. We've seen how it
is possible to call stored procedures using the { cal | procname?} syntax to retrieve data for a single
record and to manipulate records using the Command. Par anet er s collection. We made use of a
standard include file to create our database connection and a useful function to output a list of OPTI ON
tags based on a Recor dset of data.

517

Chapter 15

Retrieving ADO Recordsets from an Oracle
Stored Procedure

We'll finish off with something of a holy grail. Unlike SQL Server, PL/SQL does not allow us to execute
a SELECT statement within a stored procedure without a corresponding | NTOstatement. This means we
cannot easily return a recordset back to the calling client whether it is an ASP script or another PL/SQL
program.

Consider the following SQL Server stored procedure:

CREATE PROCEDURE sp_Get Aut hor s

AS
BEG N
SELECT au_l nane, au_f nane
FROM aut hor s
ORDER BY au_l nane, au_f nane
END

Try creating the following very similar stored procedure in Oracle:

CREATE PROCEDURE sp_Get Aut hor s
AS
BEG N
SELECT enane
FROM enp
ORDER BY enane;
END;

You'll receive the following error messages:

Errors for PROCEDURE SP_GETAUTHORS:

LI NE/ COL ERROR

4/ 3 PLS-00428: an INTO clause is expected in this SELECT statenent
4/ 3 PL/ SQL: SQ. Statenent ignored

Once upon a time, I searched Oracle's own PL/SQL documentation for an answer to this, and I got
the impression that this will never be implemented. I believe the reason was, that they feel a calling
program, X, should pass parameters into another program, Y, allowing Y to populate the results so
that X can then deal with them. This approach doesn't really help us from an ADO point of view.

However, it can actually be achieved by using PL/SQL tables and the Microsoft ODBC for Oracle, or
reference cursors with Oracle's Oracle Provider for OLE DB. We'll start off with PL/SQL tables and
cover reference cursors in the next section.

PL/SQL Tables are somewhat of a misnomer as it might be easier if they were called PL/SQL Arrays.

The following diagram shows three records from the enp table and how they would be represented in
three PL/SQL Table variables:

518

Oracle8 and OracleS8i

1 HALES DEVELOPER 10000

s 4
2 | JOMES MANAGER 2975 V3
SCOTT ANALYST 3000
HALES DEVELOPER 10000
2 JOMES V4 2 MANAGER V4 2 2875 V4
3 SCOTT 3 AP ALY ST 3 3000

We have three columns, ENAME, JOB and SAL in our source result set. For each column of data we have
a corresponding PL/SQL table variable, 0o_ENAVME, 0_JOB and 0_SAL, each mapping to a value of each
column. The PL/SQL table variables are distinct entities in their own right. In order to populate the
PL/SQL tables we need to scroll through the records in the source resultset, and add an entry for each
column to the corresponding element in each PL/SQL table.

PL/SQL tables have the following characteristics:

O One-Dimensional: each PL/SQL table can contain only one column of data.

O Integer-Indexed: Each element of the array is indexed by a single integer much like a
VBScript array.

O Unbounded Dimensions: There is no limit to the size of a PL/SQL table, as the structure
will alter in size to accommodate new elements.

O Uniform Data Type: Only a single uniform data type can be stored in a particular
PL/SQL table. So, if you start off with a NUMBER data-type, then all other elements
must also be a NUVBER.

PL/SQL table types are defined using the TYPE statement, for example:

TYPE tbl FirstName 1S TABLE OF VARCHAR2(30) | NDEX BY BI NARY_I NTEGER;
This would declare a PL/SQL table type called t bl Fi r st Nare that could be used by a variable to store
an array of strings up to 30 characters in length. A variable of this type could be declared as the
parameter to a stored procedure, thus:

PROCEDURE CGet Enpl oyeeli st (o_Fi rst Namre OUT t bl Fi r st Nanme)

Each PL/SQL table type that you want to use must be defined within the specification section of an
Oracle Package.

In the case of a stored procedure that returns a list of employee names and numbers, we must create an

individual parameter for both the employee name and the employee number values, both being
declared using the PL/SQL table type as defined in our package specification.

519

Chapter 15

In order to populate the employee number and employee name PL/SQL tables with data, we can use a
cursor that loops through a selection of records and transfers each item of data into the corresponding
PL/SQL table element.

A cursor allows you to programmatically step through a result set of data, performing operations
based on the current row until the end of the result set is reached.

The easiest way to implement an Oracle cursor is by declaring it outside of a program block and
then opening it using a cursor FOR. . . LOOP. The cursor FOR. . . LOOP opens the cursor for you,
repeatedly fetches rows of values from the result set into fields and then closes the cursor once all
rows have been processed.

For example, the following cursor will calculate the total salary for all employees in the enp table:

DECLARE CURSOR enp_cur |S SELECT sal FROM enp;
Tot al Sal ary NUMBER,
BEG N
FOR enp_rec IN enp_cur LOOP
Total Salary := Total Salary + enp_rec.sal;
END LOOP;
END;

We'll start our example off by creating a simple package that contains one stored procedure called
Enmpl oyeeSear ch. This will allow us to retrieve a list of employees from the enp table within the

scott schema, based on their name.

Jump to your SQL editor and add the following package specification to the scott schema:

CREATE OR REPLACE PACKAGE Enpl oyee_Pkg

AS

TYPE t bl EnpNo |'S TABLE OF NUMBER(4) I NDEX BY BI NARY_| NTEGER;
TYPE t bl ENane IS TABLE OF VARCHAR2(10) | NDEX BY BI NARY_I NTEGER;
TYPE t bl Job I'S TABLE OF VARCHAR2(9) | NDEX BY BI NARY_|I NTECER;

PROCEDURE Enpl oyeeSear ch
(i _EName I'N VARCHAR2,
o_EnpNo QUT thbl EnpNo,
o_ENane QUT t bl ENane,
o_Job QUT thl Job);
END Enpl oyee_Pkg;

Our package is called Enpl oyee_Pkg, which we will need to use when referencing the
Enmpl oyeeSear ch procedure. We will be returning three columns in our Recor dset : employee
number, name and job, so we have created a separate PL/SQL table type for each column.

Note that Enpl oyeeSear ch doesn't actually include any code - that's the job of the package body. If
you try to define the implementation here you'll get an error from Oracle.

We've defined one input parameter, the name to search for, and a separate output parameter for each of

the columns to return. Now we can create the package body - the bit that does the actual work, so
execute the following SQL script:

520

Oracle8 and OracleS8i

CREATE OR REPLACE PACKAGE BODY Enpl oyee_Pkg
AS
PROCEDURE Enpl oyeeSear ch
(i _EName IN VARCHARZ,

o_EnpNo QUT tbl EnpNo,

o_ENane QUT tbl ENane,

o_Job QUT thl Job)
1S

We start off by adding the word BODY before the package name, dropping the PL/SQL table definitions,
and adding the word | S to start the implementation.

CURSOR cur _enpl oyee (curName VARCHAR2) | S
SELECT enpno,
enane,
j ob
FROM enp
WHERE UPPER(enane) LIKE '% || UPPER(curNanme) || '%
CORDER BY enane;

Recor dCount NUVMBER DEFAULT O;

If you recall from our overview of PL/SQL blocks, we need to declare any variables or cursors that
are going to be used by our procedure. We define a cursor called cur _enpl oyee that has its own
input parameter called cur Nane and a number variable called Recor dCount to store a count of the
records processed.

Our cursor isn't that sophisticated: it uses || to add the wildcard character '% to the beginning and the
end of the required search name. In SQL Server, we would have used the + string concatenation
operator. This enables the LI KE statement to find any employee's names that contain the specified
characters. As we populate each of the PL/SQL table parameters we need to keep a track of the current
element being set, so we use Recor dCount . PL/SQL tables are 1-based so we must increment the
Recor dCount first as it starts from 0 initially.

BEG N
FOR cur RecEnpl oyee I N cur_enpl oyee(i _ENane) LOOP

Recor dCount : = RecordCount + 1;
o_EnpNo(Recor dCount) : = cur RecEnpl oyee. enpno;
o_EName(Recor dCount) : = cur RecEnpl oyee. enane;
0_Job(RecordCount): = cur RecEnpl oyee. j ob;
END LOOP;
END Enpl oyeeSear ch;
END Enpl oyee_Pkg;

Here we have defined the actual implementation of the Enpl oyeeSear ch procedure. We simply
open the cursor and ask it to transfer each record into a cursor variable called cur RecEnpl oyee.
Notice that we didn't actually define the variable cur RecEnpl oyee, as this is simply a reference

name to the record structure for the cursor. We can still refer to it within our cursor FOR. . . LOOP
as though it was declared.

Then it's just a case of moving through each record, incrementing the record count, and transferring
each individual field into each output parameter in the identical element position using Recor dCount .

521

Chapter 15

Now we need to call the procedure from an ASP script to populate the data. This is where you're likely
to have the most problems when writing your own procedures. The following rules must be

remembered, otherwise it simply won't work and you could spend days and days trying to work out why
—as I did!

O Use the Microsoft ODBC Driver for Oracle.

If you try to use the OLE DB Provider for Oracle you'll get an error message saying
"Catastrophic Error"! You should also try to ensure that you're using at least version
2.573.4202.00 of the driver.

O Argument Naming and Positioning.

When setting the Command object's CommandText , you must ensure that you use exactly the
same name and same position for each parameter as you did when you declared each
parameter in your stored procedure. If not, you'll get the rather misleading ODBC error
message "Resultset column must be a formal argument".

0O Maximum Records Returned.

You must use the resul t set qualifier as part of your CommandText string to tell the driver
which parameters are recordsets, such as:

"{cal | Enpl oyee_Pkg. Enpl oyeeSearch("?, {resultset 100, o_EmpNo, o_ENane,
o_Job})}"

The number after r esul t set indicates the maximum number of records to be returned in
this call. The driver actually allocates a memory cache to store this amount of data. (There
appears to be no documentation that confirms what happens when the number of records is a
lot less than this number.) If you exceed this number, by even one record, then you will
receive Oracle error ORA-06512. It is suggested that you limit the number of records within
your cursor population by passing the required value as an additional parameter to your
stored procedure and limiting the cursor FOR. . . LOOP. We didn't do this in our example but
it might be a nice exercise to try.

So we can now create a simple ASP 4J Stored Procedure RecordSet Demo - Microsoft Internet E xplorer M= 3 I
script to call our procedure. I'm going to J O ey —— |

use a single AS? scrlpt that conta}ns a T Al A @ 8 »
fOI'ITl that submlts to 1tself and writes out Back Fariard Stop Refresh Home Search Favortes History

the search results. JAQdIESS I@ hittp: //ids/StoredProcR esults etDema. asp j 6o |J Links

Stored Procedure RecordSet Demo

[Es _Seardh |

Employee Job

HALES |[DEVELOFPER
TAWES |CLERE
JONES MANAGER

[
|#] Done [| 5% Localintranet o

522

Oracle8 and OracleS8i

<% Option Explicit
Response. Expires = 0%
<HTM_>
<HEAD>
<TI TLE>St ored Procedure Recordset Deno</TI TLE>
</ HEAD>
<BODY>
<CENTER><H2>St or ed Procedure Recordset Denp</ H2></ CENTER>
<%
Di m st r Sear chNane
Di m obj Connecti on
Di m obj Comrand
Di m obj Recor dset
Di m var EnpNo

strSear chName = Request. For n("t xt Sear chNanme")
| f strSearchNane = "" Then strSearchNanme = "%

We transfer the t xt Sear chNane input field from the form into a variable. If it was empty, which it will
be the first time, we set it to %so that we get all matching names.

Set obj Connection = Server. Creat ebj ect (" ADODB. Connecti on")
Wt h obj Connection
. ConnectionString = "driver={Mcrosoft ODBC for Oracle};" & _
"server =Oracl e8_dev; U D=scot t ; PAD=ti ger; "
. CursorLocation = adUsed i ent
. Open
End Wth

Here we connect to the database using the Microsoft ODBC Driver for Oracle.

Now for the fun part:

Set obj Conmand = Server. Creat eObj ect (" ADCDB. Commrand")
Wt h obj Comrand
Set . ActiveConnection = obj Connection

. CommandText = "{call Enpl oyee_Pkg. Enpl oyeeSearch(" & _
"?, {resultset 100, o_EnpNo, o_ENane, o_Job})}"
. CommandType = adCndText

. Paranet ers(0). Val ue = str SearchNane

Set obj Recordset = . Execute()
End Wth
%
We are using the standard {cal | . ..} and ? syntax to define the first input parameter. Notice that we

have included the {r esul t set 100....} string, as mentioned above, to define those parameters that are
to be returned in the Recor dset object and that we only want 100 records returned. We have simply

pasted in the names of the parameters exactly as we declared them. The only parameter that we actually
set is the first input parameter, the search name. Finally, we call the Execut e statement to get our data.

523

Chapter 15

What you do is navigate through the records in the Recor dset and creating a nicely formatted
HTML table.

<FORM ACTI ON=" St or edPr ocResul t Set Denp. asp” METHOD=" POST" >
<I NPUT NAME="t xt Sear chNanme" VALUE="<%st r Sear chNane%" >
<I NPUT TYPE="SUBM T" VALUE="Search">
<p>
<TABLE BORDER=1>
<TR><TD>Enpl oyee</ TD><TD>Job</ TD></ TR>
<%
Do Wile Not obj Recordset. EOF
var EnpNo = obj Recordset. Fi el ds(" o_EnpNo")
Response. Wite "<TR>" & _
" <TD>" & _
obj Recordset. Fi el ds("o_ENanme") & "</ A></TD>" & _
<TD>" & obj Recordset.Fields("o_Job") & "</TD>" & _
"</ TR>"

obj Recor dset . MoveNext
Loop

Set obj Recordset = Not hi ng
Set obj Conmand = Not hi ng
Set obj Connection = Not hi ng
%

</ TABLE>

</ FORW>

</ BODY>

</ HTM.>

Retrieving ADO Recordsets using Reference Cursors

Oracle has released version 8.1.6 of its own provider, Oracle Provider for OLE DB. This provider has a
class name of OraOLEDB.Oracle that is used when defining your ADO connection string. It supports
the same set of Oracle data types as Microsoft's OLE DB Provider for Oracle with the additional
support for the binary object types BLOB, CLOB, NCLOB, and BFILE, but as with Microsoft's
provider, it also does not provide support for the Oracle8i object data types.

This provider gives us pretty much the same level of functionality as Microsoft's, except that it supports
the use of Oracle reference cursors so that we can return back an ADO Recor dset object from a stored
procedure. A reference cursor is a pointer to a memory location that can be passed between different
PL/SQL clients, thus allowing query result sets to be passed back and forth between clients.

A reference cursor is a variable type defined using the PL/SQL TYPE statement within an Oracle
package, much like a PL/SQL table:

TYPE ref _type_name IS REF CURSOR RETURN return_type;

524

Oracle8 and OracleS8i

Here, r ef _t ype_nane is the name given to the type and r et ur n_t ype represents a record in the
database. You do not have to specify the return type as this could be used as a general catch-all
reference cursor. Such non-restrictive types are known as weak, whereas specifying the return type is
restrictive, or strong. The following example uses “ROMYPE to define a strong return type that represents
the record structure of the enp table:

DECLARE TYPE EnpCur Type IS REF CURSCR RETURN enp%ROANTYPE;

So let's jump straight to an example. We'll create a new Oracle package that contains a single
procedure, Enpl oyeeSear ch, which returns a list of matching employee names. From your SQL
editor, execute the following code to create the package specification:

CREATE OR REPLACE PACKAGE Enpl oyee_Ref Cur_pkg
AS

TYPE enpcur |S REF CURSOR;
PROCEDURE Enpl oyeeSear ch(i _ENane IN VARCHARZ2,
o_EnpCursor OUT enpcur);
END Enpl oyee_Ref Cur _pkg;

We've created a new type called enpcur that returns a weak reference cursor that we use as an output
parameter to the Enpl oyeeSear ch procedure. Now we need the package body:

CREATE OR REPLACE PACKAGE BCODY Enpl oyee_Ref Cur_pkg

AS
PROCEDURE Enpl oyeeSear ch(i _ENane IN VARCHARZ2,
o_EmpCur sor QUT enpcur)
[
BEG N

OPEN o_EnpCursor FOR
SELECT enp. enpno, enp.ename, enp.j ob,
enp. sal, dept.dnane, dept.loc
FROM enp, dept
WHERE enanme LIKE "% || i_EName || '%
AND enp. dept no = dept. dept no
ORDER BY UPPER(enp. enane) ;
END Enpl oyeeSear ch;
END Enpl oyee_Ref Cur _pkg;

This code is very similar to our previous stored procedure, except that we don't need to transfer each
column in distinct PL/SQL tables, as the reference cursor, o_EnpCur sor, is returned back to the client.
The Oracle Provider for OLE DB converts any parameters that reference cursors into an ADO

Recor dset for us — but only if we add PLSQLRSet =1 to our connection string, which we'll cover next.

525

Chapter 15

Let'S have a],OOk at the re SultS page that Calls thlS /2 Stored Procedure Reference Cursor RecordSet Demo - Microsoft Intern.... [[=] E3

stored procedure: | Fle Edi View Faoites Took Hep |

® .2 . @ f&‘@@ >

Back Formard Stop Refresh Hame Search Favorites

Address [] hip://ids/RefCusorDemo.asp =l
=

Stored Procedure Reference Cursor
RecordSet Demo

ADO Provider=0raOLEDE. Oracle. 1

% Search

‘Employee |.Tob Salary |Depar1;ment |Location
[ADAWMS [CLERK 1100 [RESEARCH |[DALLAS
ALLEN [SALESMAN 1600 [SALES [cEICAGO
ELAKE |MANAGER 2850 [SALES [cEICAGO

[CLARK [MANAGER 2450 [ACCOUNTING [NEW YORK
FOED |[ANALYST [3000 [RESEARCH |DALLAS
JAMES [CLERK 950 |[SALES CHICAGO
JOMES MMAWAGER 2975 [RESEARCH [DATLAS
KING |[PRESIDENT 5000 [ACCOTNTING [NEW YORK
MARTOT[SATESMAL 1250 [SALES CHICAGO
MILIER [CLEFK 1300 [ACCOUTING [NEW YORE
[SCOTT [aNMALYST [3000 [RESEARCH [DATLAS
SMITH [CLERE 500 [RESEARCH |DALLAS

'TURMEE [SATESMAN 1500 [SALES [cEICAGO
WARD [SALESMAN 1250 [SALES [cHICAGO
El
] [[[E8 Localintranet W

The actual ASP is very similar to our previous example so we'll just concentrate on the sections that
are different:

<%

Di m str Sear chNane
Di m obj Connecti on
Di m obj Command

Di m obj Recor dSet
Di m obj NarmePar am
Di m var EnpNo

strSearchName = Request. Forn("t xt Sear chNane")
If strSearchName = "" Then strSearchNane = "%

Set obj Connection = Server. Creat eObj ect (" ADODB. Connecti on")

So far it's just the same, except that we define a new variable, obj NanmePar am that we'll use as an ADO
Par amet er object to pass in the search name entered.

W th obj Connection
. ConnectionString = "Provider=OraOLEDB. Oracl e; " & _
"Data Source=Cracl e8i _dev;" & _
"User |D=scott;" & _
"Password=tiger;" & _

"PLSQLRSet =1; "
. Open
Response. Wite "ADO Provi der=" & .Provider & "<P>"
End Wth

526

Oracle8 and OracleS8i

Here we tell ADO to use the Oracle Provider for OLE DB, Or aOLEDB. Or acl e, and we set the
PLSQLRSet attribute to tell the provider that it should parse the PL/SQL stored procedures to
determine if any parameters return a record set. Or aOLEDB can only return one recordset per stored
procedure. If you call a stored procedure that returns more than one recordset then Or aOLEDB will only
return the first argument of a ref cursor type.

If you omit the PLSQLRSet attribute, or you set it to 0, then you'll receive the following Oracle error:

ORA-06550: line 1, colum 7: PLS-00306: wong nunber or types of argunents in call
to ' EMPLOYEESEARCH ORA-06550: line 1, colum 7: PL/SQ.: Statemnent ignored

The rest of the code goes as follows:

Set obj Conmand = Server. Creat eObj ect (" ADCDB. Command")
W't h obj Comrand
Set . ActiveConnection = obj Connection

. CommandText = "{call Enpl oyee_Ref Cur_pkg. Enpl oyeeSearch(?)}"
Set obj NaneParam = . Cr eat ePar anet er (" Sear chNanme", adBSTR, _

adPar am nput, , str SearchNane)
. Par anet ers. Append obj NamePar am

Set obj RecordSet = . Execute()
End Wth

Although our stored procedure has two parameters, the search name and the reference cursor that is
returned, you must not bind the reference cursor as a parameter using the ? attribute when using
Or aOLEDB, so we've included only one ? character to represent the Name input parameter.

The ADO Par aret er object, obj NamePar am is created using the Conmrand object's
Cr eat ePar aret er function. Cr eat ePar amet er is called in the following way:

Set paraneter = command. Creat ePar anet er (Nane, Type, Direction, Size, Value)

obj NamePar amis declared as an adBSTR type because this maps to Oracle's VARCHAR2 data type.
Once we've created the Par anet er we need to add it to the Command object's Par armet er s collection
using the Append method.

Finally we call the Execut e function to return a Recor dset object that represents the result set from
the o_EnpCur sor reference cursor parameter. That's all there is to it. We can then navigate through the
Recor dset object as usual.

It's worth remembering that if you try to call the stored procedure using the Par aret er s
collection directly:

. CommandText = "{call Enpl oyee_Ref Cur _pkg. Enpl oyeeSearch(?)}"
. Paranet ers(0). Type = adBSTR

. Paraneters(0).Direction = adPar am nput

. Paranet ers(0). Val ue = str SearchNane

527

Chapter 15

you'll get the following runtime error:
The provider cannot derive paranmeter info and Set Paraneterlnfo has not been called

Therefore you must use the Cr eat ePar armet er function.

That wraps up our look at retrieving ADO Recor dset objects from Oracle stored procedures. As
you've seen, we have two choices: PL/SQL tables with the Microsoft ODBC for Oracle Driver or
reference cursors with Oracle's Oracle Provider for OLE DB. On the face of it, the use of PL/SQL
tables does appear rather convoluted in comparison to the ease of reference cursors. Both are relatively
inefficient in terms of server performance and the Oracle Provider for OLE DB has been regarded as
rather buggy. Again, it's your choice; it's difficult to define what each can and can't do. As ever, you
should investigate how both methods perform in your own environment, looking at response times
along with CPU and memory usage.

Summary

That just about brings us to the end of this guide to connecting to an Oracle database from an ASP
application. We covered quite lot of ground here:

Installation and configuration of the Oracle8 client software, Net8

Using the Microsoft OLE DB Provider for Oracle

Using the Microsoft OLE DB Provider for ODBC

Using Oracle Objects for OLE (O040)

PL/SQL fundamentals

Creating a sample ASP application based on the scott account

O o o o o o o

Showing that it is possible to retrieve an ADO Recor dset from an Oracle stored procedure,
using both PL/SQL tables and reference cursors

Before we finish this chapter, take look at the chart below comparing each of the common methods of
data access for Oracle. I added an additional 7000 records to the enp table and then used each of the
methods to retrieve these records and display them using an ASP script. Each method was executed
three times and after each test I rebooted the server machine so that there would be very little chance of
data being cached by either Oracle or the web server (for this test the web server also doubled as the
Oracle database server to cut the time taken to shutdown and restart).

528

Oracle8 and OracleS8i

25

mPass1

0 BPass?

= = = @A Pass3
15 = = =

= = = = = B Average
10 (1 = = = =\
s H|IIE = = = = -
0 = = = = =

MEDADRA - Select ODBC for Oracle - 0040 - Select QDB for Oracle -
Select PL/SOL table

o=
L5
L
=S m
w3
om

In these tests, MSDAORA was used with a standard SQL SELECT statement, as was the ODBC Driver
for Oracle and OO40, and finally I used the ODBC Driver for Oracle in conjunction with PL/SQL
tables, and Oracle's Oracle Provider for OLE DB with a reference cursors as just described. The Y-axis
shows the amount of time taken to complete each test in seconds. I also monitored the CPU and
memory usage and they were all very similar for each test.

You can see that there is not that much difference between each method. When choosing which method
to use, the underlying factor will always be good database design and coding practices.

Don't forget that you can download all of the SQL and ASP scripts for this chapter from the Wrox
web site atht t p: / / ww. wr 0x. com

529

