39

XSD Schemas

XSD is the commonly used name for the proposed XML Schema Definition standard of the World
Wide Web Consortium (W3C). In the previous chapter, we saw how to use XDR schemas to return data
as XML. Microsoft created XDR so that it could start using XML schemas as soon as possible, even
though the W3C's work on XSD was not near completion. As such, XDR is based on a snapshot of the
W3C's schema activity from March 1999, and is purely a Microsoft product. The W3C has made
progress on XSD since then, and it now provides a much richer set of functionality than XDR.
Consequently, although the XSD schema syntax is not presently supported in SQL Server, it is
important enough for us to cover.

This chapter will examine the following:

What XSD schemas are

The present status of XSD with the W3C
How XSD schemas compare to XDR schemas
How to design and use XSD schemas

How to validate your XSD schema

SQL Server and XSD

I 0 1 N S)

Some translation tools available to convert from XDR to XSD

Chapter 6

What are XSD Schemas?

New standards for defining XML documents have become desirable because of the limitations imposed
by Document Type Definitions (DTDs). The W3C XML Schema Definition (XSD) standards were
promoted from the Candidate Recommendation Phase to the Proposed Recommendation Phase in
March 2001. Once the W3C's director approves the standards, they will become a full
Recommendation. Until the XSD standards reach the full Recommendation phase, however, they are
subject to further review and changes. Thus, the information contained in this chapter is subject to
change. However, according to members of the Schema group, this last step is almost purely
administrative and the proposed recommendation is good enough for software development.

Please consult the W3C's web site at http://www.w3.0rg for current documentation and up-to-
date information about the status of XSD. For a good overview of XSD, please see the XSD primer
document on the W3C's web site at http://www.w3.0rg/TR/xmlschema-0.

XSD Schemas vs. XDR Schemas

In the previous chapter, we learned that schemas provide an XML-based syntax for defining what
elements and attributes are allowed in a given document. We saw examples of how to create schemas
using the XDR schema syntax. So how does XDR compare to XSD? As we said earlier, XDR is
Microsoft's own version of the W3C's early 1999 work-in-progress version of XSD. XSD provides a
richer set of functionality than XDR and is vendor neutral.

Let's take a quick look at an example of how XSD compares to XDR. Don't worry yet about understanding
the details of the XSD syntax. Consider the following XML document from the XDR chapter:

<?xml version="1.0"?>
<Students>
<Student>
<ID>12345</ID>
<GPA>3.5</GPA>
</Student>
<Student>
<ID>67890</ID>
<GPA>4.0</GPA>
</Student>
</Students>

Suppose that the XML shown above represents the proper syntax for the document. A valid XDR
schema for this document could look like this:

<?xml version="1.0"?>
<Schema name="StudentsSchema"
xmlns="urn:schemas-microsoft-com:xml-data">
<ElementType name="ID" content="textOnly"/>
<ElementType name="GPA" content="textOnly"/>
<ElementType name="Student" content="eltOnly">
<element type="ID" minOccurs="1" maxOccurs="1"/>
<element type="GPA" minOccurs="1" maxOccurs="1"/>
</ElementType>
<ElementType name="Students" content="eltOnly" model="closed">
<element type="Student" minOccurs="0" maxOccurs="*"/>
</ElementType>
</Schema>

184

XSD Schemas

To define the same schema following the XSD syntax, on the other hand, the schema definition might
look like:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Student" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ID" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="GPA" type="xsd:string" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

As you can see from a quick glimpse at these two examples, there are distinct differences in the syntax
between XDR and XSD. The XSD syntax will be explained in greater detail later in this chapter.

Key Features

XSD schemas offer the capabilities of XDR schemas, DTDs, and much more. Here is a brief summary
of the key features of an XSD schema document:

O Like XDR schemas, XSD schemas are XML documents, so you don't have to learn another
syntax to use them (unlike with DTDs).

0 As with XDR schemas, data types in XSD schemas can be specified for an element or
attribute.

Q XSD schemas allow you to define your own data types, or use one of the 44+ pre-defined data
types.
O XSD schemas offer the ability to define keys on data elements for uniqueness.

O XSD schemas support object-oriented style inheritance where one schema can inherit from
another. This is a huge benefit and allows you to create re-usable schemas.

O XSD schemas allow you to define elements that can be substituted for each other.

Q XSD schemas allow you to define elements with Null content.

Like XDR, XSD schemas define the format, content, and data of an XML document. When a document
that references an XSD schema is validated by a parser that supports XSD, it confirms whether or not
the document meets the criteria defined in the schema. If the validation fails, an error occurs.

Designing XSD Schemas

Let's walk through the details of the student XSD schema presented earlier to see how it works.

XML Declaration

An XSD schema is an XML document, so the first line can be a typical XML declaration:

<?xml version="1.0"7?>

185

Chapter 6

In this example, version is the only attribute expressed in the declaration. Other attributes, such as
encoding, can be specified to determine which encoding is used to represent characters.

<schema>

The next line in our XSD schema is the root element itself. For XSD schemas, the root element is
always <schema>. To identify the root element to an XML parser as an XSD schema, a specific
namespace is referenced in the <schema> element. Here is an example:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
</xsd:schema>

The namespace in the declaration is referencing the W3C's Proposed Recommendation version of XSD
from 2001. In older examples, you may see the Candidate Recommendation version of XSD referenced,
as shown below:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2000/10/XMLSchema">
</xsd:schema>

Note the xsd: prefix used in the above examples. This prefix is used to designate that an XSD schema
is being used, although any prefix can actually be specified. The prefix must match the one specified
prior to the namespace declaration, as shown below:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

The purpose of using the prefixes throughout the schema is to show that the contents of the schema
belong to the vocabulary of the designated namespace (XSD), versus that of another schema author.

It is worth noting that, if you make this namespace the default, then you don't have to use the prefixes at
all. However, you should be aware that using default namespaces can lead to problems later, especially
when you import schemas. Even the W3C's examples use the xsd: prefix throughout the code rather
than setting the default namespace.

<element>

After identifying the schema, we then move on to the heart of the schema — the elements. We learned a
lot about elements in the XDR chapter. So let's dive right into the syntax for creating elements with
XSD.

Assigning values to the following attributes can modify the behavior of the element:

0 name
Required. Refers to the name of the element.
a type

Refers to a simple type (for example xsd: string) or the name of a complex type. The type
attribute can be used in the declaration of a simple type (when it is not being restricted) but
not with a complex type, as will be demonstrated in this section.

186

XSD Schemas

Q minOccurs

This attribute determines if the element is optional. This attribute is not required. If
unspecified, the default is 1. The table below shows the possible values that may be assigned:

Value Description
0 The element is optional.
Integer > 0 The element must occur at least the specified number of times.

a maxOccurs

This attribute determines how many elements are allowed. This attribute is not required. If
unspecified, the default is 1. The table below shows the possible values that may be assigned:

Value Description
Integer > 0 The element can only appear up to the specified number of times.
Unbounded The element may appear an unlimited amount of times.

With this understanding of <element>, let's take a closer look at our schema example:

<?xml version="1.0"7?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Student" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ID" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="GPA" type="xsd:string" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Looking at the schema, we notice the following definitions and rules:

Q The <ID> and <GPA> contain string values.

O The <Student> element must contain only one <ID> and <GPA> element (the <ID> and
<GPA> have a minOccurs and maxOccurs of 1). Note that the minOccurs and maxOccurs
attributes were not necessary in the above example because 1 is the default value if they are
not specified.

Q There can be unlimited <Student> elements or none at all (ninOccurs is 0 and maxOccurs
is unbounded).

O By specifying <sequence>, the <ID> and <GPA> elements are required to appear in the
order listed in the schema.

In other words, we have defined that documents adhering to this XSD schema may list as many students
as needed, as long as an ID and GPA are provided for each student. This "contract" can now allow
multiple parties to share student information in an agreed format.

Now let's look at the detailed syntax of these element declarations.

187

Chapter 6

<complexType> vs. <simpleType>

In the previous chapter, we saw how to use the <ElementType> element in XDR to describe
characteristics — such as whether the element can contain child elements — by simply changing the
values of the element attributes (for example textOnly, eltOnly, etc.). XSD takes a different
approach. With XSD, you explicitly declare an element to be either a complex type or a simple type.
When do you use each one?

The <complexType> element should be used:

QO When your element will contain child elements, and/or

O When your element will contain attributes.
The <simpleType> element should be used:

0O When you want to create a new data type from a built-in simple type, and/or

QO When your element will not contain child elements or attributes.

To illustrate the differences, let's take a look at some examples. In the student example we have been
using, each student has an ID and a GPA. Thus, if student is an element, then ID and GPA would be
considered children of that element. Because the student element has child elements, we have to declare
it as a complex type, as shown below:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Student" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ID" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="GPA" type="xsd:string" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Now let's modify our example to demonstrate the simple type element concept. Remember that we
cannot use a simple type if there are children or attributes of the element. Suppose that we want to
create a new data type called StudentGPA that would define the proper format for the GPA. In this
scenario, we want to extend an existing simple data type (for example xsd:string) and customize it
for our own purposes. These customizations are referred to as restrictions on the existing data type. We
want to restrict the string so that the GPA has to be in a format like 4.00, for example. That is, we want
there to be an integer followed by a decimal point and then two more integers. The code to declare this
looks like:

<xsd:simpleType name="StudentGPA" minOccurs="1" maxOccurs="1">
<xsd:restriction base="xsd:string">
<xsd:length value="4"/>
<xsd:pattern value="\d{1l}.\d{2}"/>
</xsd:restriction>
</xsd:simpleType>

188

XSD Schemas

Following the simple type element declaration are the restrictions. Notice first how the base data type
that we are starting with is the string data type. Next, the restrictions that are being placed on the
string data type are specified. In this case, we are requiring the length of the StudentGPA to be 4
characters and the pattern to be one digit, then a decimal, and then two more digits. It is important to
know that this pattern is written in the Unicode Regular Expression language, which is similar in its
syntax to the Perl programming language.

Let's digress for a moment to take a look at the regular expression language in more detail and then
we'll come back to the pattern of our specific example, and see if it makes more sense. The table
below summarizes some of the most common uses of regular expressions:

(valuel|value2)

[abcde]

[~0-9]

{integer}

specified values, but more
are allowed

OR

Another way to specify OR,
but with single characters
only

Any non-digit character

The number of occurrences
that there must be of the
previous value

Regular Expression Explanation Valid Example(s)
\d Digit 1, 2, 3, etc.
[a-z] Lower case ASCII a, b, c, etc.
characters
[A-Z] Upper case ASCII A, B, C, etc.
characters
* Wildcard A*Z = ABZ, ABCZ, ABCCZ, etc.
? Single placeholder A?Z = ABZ, ACZ, ADZ, etc.
+ Inclusive of at least the

A+Z = AZ, ABZ, ABCZ, etc.

(A]Z)+Q = AQ, ZQ, ABQ, ZBQ, etc.

[abc] =a, b, or ¢

A, B, C, a, b, c, etc.

az{2} = azz
\d{3} = 123, 456, 789, 444, etc.
(az){2} = azaz

Now, back to our example from before:

<xsd:pattern value="\d{1l}.\d{2}"/>

The \d{1} is specifying that there must be one and only one digit prior to the decimal point. Then,
after the decimal point, there must be two more digits, as specified by the \d{2} syntax.

This is just one of the many possible ways that regular expressions can be used to specify patterns. A
detailed explanation of regular expressions is beyond the scope of this chapter. For more information

about regular expressions, please consult Appendix D of the W3C's primer document at
http://www.w3.0rg/TR/xmIschema-0.

189

Chapter 6

Let's get back on track with our working example of declaring a custom data type called StudentGPa,
which is shown again here to refresh your memory:

<xsd:simpleType name="StudentGPA" minOccurs="1" maxOccurs="1">
<xsd:restriction base="xsd:string">
<xsd:length value="4"/>
<xsd:pattern value="\d{1l}.\d{2}"/>
</xsd:restriction>
</xsd:simpleType>

When declaring the complex type <Student> element with <ID> and <GPA> as children, we can make
use of our new StudentGPA simple type by defining the GPA to be of this type instead of just a simple
string type. Here's an example:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Student" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ID" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="GPA" type="StudentGPA"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:simpleType name="StudentGPA" minOccurs="1" maxOccurs="1">
<xsd:restriction base="xsd:string">
<xsd:length value="4"/>
<xsd:pattern value="\d{1l}.\d{2}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

We could put the simpleType declaration format for the <GPA> element inline with the <GPA>
element itself, to accomplish basically the same result. Here's how:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Student" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ID" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="GPA" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:length value="4"/>
<xsd:pattern value="\d{1l}.\d{2}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

190

XSD Schemas

In this second version, the simple type declaration and the restrictions immediately follow the <GPA>
element declaration line.

The difference between these two methods is that the first allows you to access the
StudentGPA data type in multiple places in the schema. With the second example, the
restrictions are specific to the <GPA> element and cannot be re-used by name outside
that element.

Now that we have seen some examples of the different ways to declare elements as simple and complex
types, let's summarize what we have learned. There are actually three ways to declare elements. Under
the first method, you list the name, type, minOccurs, and maxOccurs attributes. This method is
actually an implied way of defining simple type elements without specifying the <simpleType>
element syntax explicitly. You don't have to explicitly state that it is a simple type because you are
using one of the built-in simple types already:

<xsd:element name="name" type="type" minOccurs="int" maxOccurs="int"/>

Remember that the values of the attributes are merely placeholders.

This syntax should look familiar to you. We declared the <ID>and <GPA> elements this way in one of
our previous examples:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.o0rg/2001/XMLSchema">
<xsd:element name="Student" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ID" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="GPA" type="xsd:string" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

With the second method for declaring an element, the name, minOccurs, and maxOccurs attributes
are specified for the parent, which is then declared as a complexType so that it can have child elements:

<xsd:element name="name" minOccurs="int" maxOccurs="int"/>
<xsd:complexType>
</xsd:complexType>

</xsd:element>

The <Student> element in the same example was declared with name, minOccurs, and maxOccurs
attributes, and as a complexType with <ID> and <GPA> as children:

<?xml version="1.0"7?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Student" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ID" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="GPA" type="xsd:string" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

191

Chapter 6

With the third method, the name, minOccurs, and maxOccurs attributes are specified, and then a
simpleType is declared to describe the element restrictions:

<xsd:element name="name" minOccurs="int" maxOccurs="int"/>
<xsd:simpleType>
<xsd:restriction base = "type">
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

An example of this was shown in our custom-defined GPA example:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Student" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ID" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="GPA" type="StudentGPA"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:simpleType name="StudentGPA" minOccurs="1" maxOccurs="1">
<xsd:restriction base="xsd:string">
<xsd:length value="4"/>
<xsd:pattern value="\d{1l}.\d{2}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

The ability to create your own data types, as in the example above, is a very powerful feature of XSD.
We will walk through more examples of how to create your own data types in the Data Types section of
this chapter.

Have you noticed how the student example we have been working with is element-centric? Suppose that
we decided that <ID> should be an attribute of <Student>, instead of a child element. What changes
need to be made to our schema? Let's take a look at other parts in the XSD schema that define
attributes in an XML document.

<attribute>

Defining attributes in an XSD schema is very similar to defining elements. Here is the list of attributes
that are associated with the <attribute> element:

0 name
Required. This is the name of the attribute.

a type
Any simple type such as xsd:string, xsd:integer, StudentGPA (the custom simple type
we created above), etc. can be specified. This identifies the data type of the attribute.

192

XSD Schemas

0 use

Value Description

Required The attribute must appear in the element.

Default The attribute will use the default value if none is specified.
(See the value attribute).

Fixed The attribute contains a fixed value that will never change.
(See the value attribute).

Optional The attribute is optional.

Prohibited The attribute is prohibited.

Q value

Specifies the value of the attribute. This is only used when the use attribute is Default or
Fixed.

We learned earlier that complex types can contain children or attributes. So we already know that an
attribute has to be declared within a complex type. However, attributes themselves can only have
simple types. They cannot contain child elements.

There are two ways to define an attribute. The first method is done on one line and is used in scenarios
when the attribute is based on an existing simple type (either a built-in simple type or a simple type
defined elsewhere in the document). The syntax for this method is shown below (again, using
placeholders):

<xsd:attribute name="name" type="simple type" use="how used" value="value"/>

The second method for defining an attribute allows you to specify explicit restrictions on the attribute,
such as the format that it must be in to be valid:

<xsd:attribute name="name" use="how used" value="value">
<xsd:simpleType>
<xsd:restriction base="simple type">
<xsd: facet value="value"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>

Facets will be discussed in greater detail in the Data Types section. In place of facet above, you can
specify any particular facet available for a given simple type (for example length, pattern,
enumeration, etc. for xsd:string). For now, let's move on to seeing how each of these methods can
be used, by modifying our ongoing example.

Suppose we want the <ID> element to be an attribute of the <Student> element. The schema would
then look something like this:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Student" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:element name="GPA" type="xsd:string" minOccurs="1" maxOccurs="1"/>

193

Chapter 6

<xsd:attribute name="ID" type="xsd:string" use="required"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>

There are a couple of important aspects to take note of here. First, notice how the attribute is defined
within the <complexType> element. We recall from before that attributes can only exist within a
complex type. In this instance, we have made ID an attribute of the <Student> element, instead of an
element itself. Secondly, note how the ID declaration now follows the GPA declaration instead of coming
before it. Attributes need to be declared as the last items in the complex type, following all the elements.

These revisions now indicate the following requirements:

Q The <Student> element must contain an ID attribute.

Q The ID attribute cannot be used in any other elements, as it is declared within the <Student>
element.

If we later introduced other elements to the schema that could use an ID attribute, we could simply
declare the attribute outside of any element to make it accessible to the schema as a whole.

What if we decide that we want to require the ID to be a fixed length string of 5 characters that can only
contain numeric values? In this instance, we want to place restrictions on the values and format the ID
will contain. The following example shows how we can do this:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Student" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:element name="GPA" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:attribute name="ID" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:length value="5"/>
<xsd:pattern value="\d{5}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Notice how, in this instance, we have declared the attribute and then declared a simple type with the
restrictions that we want to implement. We specify in the 1ength facet that the ID must be 5 characters
long and in the pattern facet that it must contain five digits.

Now that we have a basic understanding of how to declare elements and attributes, let's take a look at
how to reference an XSD schema from an XML document. We learned how to do this by referencing
an XDR schema in the previous chapter. Now let's take a look at how to do this with XSD. Here is an
XML document example with the XSD schema assumed to reside in the main directory on the

www .mycollege.org namespace:

194

XSD Schemas

<?xml version="1.0"?>
<Students xmlns = "http://www.mycollege.org"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.mycollege.org/StudentSchemal .xsd">
<Student>
<ID>12345</ID>
<GPA>3.5</GPA>
</Student>
<Student>
<ID>67890</ID>
<GPA>4.0</GPA>
</Student>
</Students>

Save the schema as a file named StudentSchemal.xsd. Notice how a separate namespace,
http://www.w3.0org/2001/XMLSchema-instance, is used with the xsi: prefix. The W3C actually
created this separate namespace to allow you to tie a document to its schema. If the XML document
above is validated by an XML parser that supports XSD, it will succeed.

If you aren't using a namespace, then there is another way to reference the schema in your XML
document. An example is shown below:

<?xml version="1.0"7?>
<Students xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xs1:noNameSpaceSchemaLocation="StudentSchemal .xsd">
<Student>
<ID>12345</1ID>
<GPA>3.5</GPA>
</Student>
<Student>
<ID>67890</ID>
<GPA>4.0</GPA>
</Student>
</Students>

Thus, if the author of a document makes use of namespaces to indicate the intended interpretation of
names in the document, the xsi:schemaLocation attribute should be used to specify the location of
the XSD schema that can be used to validate the document (which, in this case, is assumed to reside in
the same directory as the XML document itself).

If the author does not need or want a namespace, the xsi:noNameSpaceSchemaLocation attribute
can be used to locate the XSD schema used to validate the document.

So far, we have illustrated the basics of defining simple XSD schemas using elements and attributes and
have seen how to reference those schemas from XML documents. The next section will look at some
alternative ways to structure the syntax, so we can accomplish better results.

Structure Alternatives

There are a few different ways to structure an XSD schema. One way is to define elements and their
attributes within the complex type declaration itself. Another way to define elements is to declare them as
immediate children of <schema> (that is, outside the complex type itself) and then just make reference to
the elements within the complex type. By declaring the elements nested within the complex type
declarations, their scope is local to that complex type — they are only available to that complex type and
cannot be referenced by other elements in that schema, or in any other schema for that matter. By
declaring the elements outside the complex type, on the other hand, their scope is global. This has the
effect of allowing those elements to be utilized from anywhere within the schema or from other schemas.

195

Chapter 6

So, in situations where you do not need the elements to be referenced from within the same schema or
from other schemas, it is perfectly fine to declare them nested within other elements. However, in
situations where you want to be able to re-use a specific element, you should define that element as a
child of <schema>.

Let's walk through some examples to further clarify these concepts. Recall our example from earlier:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Student" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ID" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="GPA" type="xsd:string" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

First, notice how the <Student> element is declared as a child of the root element <schema>. This
means that the <Student> element is global in scope and can be referenced from this or other
schemas.

The <ID> and <GPA> elements, on the other hand, are declared within the Student complex type itself:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Student" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ID" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="GPA" type="xsd:string" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

This means that the <ID> and <GPA> are local in scope to the <Student> element and cannot be re-
used anywhere else.

But what if we really need to re-use ID and GPA? For instance, we might also have to track professor
credentials, which could also consist of an ID and GPA of the same data types. Let's take a look at how
we could declare the ID and GPA globally so that we can reference them in other places, including in a
<Professor> element.

First, we will start by modifying our previous example to define ID and GPA globally, and then have the
<Student> element reference the global declarations:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Student" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="ID" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="GPA" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="ID" type="xsd:string"/>
<xsd:element name="GPA" type="xsd:string"/>
</xsd:schema>

196

XSD Schemas

In the above example, the ref attribute refers to the <ID> and <GPA> elements that are declared
outside the Student complexType declaration as children of the root <schema> element. This takes
two extra lines of code to accomplish, but the benefit of code re-use far outweighs the extra lines
required.

So, if we also want to implement the <Professor> element using these global elements, it might look
something like this:

<?xml version="1.0"7?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Student" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="ID" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="GPA" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Professor" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="ID" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="GPA" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="ID" type="xsd:string"/>
<xsd:element name="GPA" type="xsd:string"/>
</xsd:schema>

Now, in the event that we want to modify the <ID> or <GPA> elements, we only have to change them in
one place and both the <Student> and <Professor> elements will automatically reference the
updates. Imagine the extra work required if we had duplicated the declarations in both places and then
needed to modify them. Or, worse yet, what if we had duplicated them everywhere in multiple
schemas? This could turn into a maintenance nightmare.

The fact that XSD provides you with a mechanism for re-using code in an efficient way is an incredible
advantage. It is also a critical concept to master, so let's look at a few more examples to further fix it in
your mind.

Recall when we looked at the two different syntaxes for declaring the StudentGPA restrictions. In one
example, the restrictions on the GPA were nested within the element declaration itself:

<?xml version="1.0"7?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Student" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ID" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="GPA" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:length value="4"/>

197

Chapter 6

<xsd:pattern value="\d{1l}.\d{2}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

In this instance, the restrictions on the GPA are declared within the GPA element itself and are local in
scope. Thus, they cannot be re-used. However, recall how the StudentGPA was declared separately in
the other example, and then referenced as the type attribute for the <GPA> element:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Student" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ID" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="GPA" type="StudentGPA"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:simpleType name="StudentGPA" minOccurs="1" maxOccurs="1">
<xsd:restriction base="xsd:string">
<xsd:length value="4"/>
<xsd:pattern value="\d{1l}.\d{2}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

In this example, the <StudentGPA> element is global and can be re-used from within this schema or
from other schemas. So, if we have another schema that needs to make use of the <StudentGPA>
element, we can import the above schema and reference it, just as if it were declared within the same
schema. Pay close attention as this is really useful.

Referencing External Schemas

The first step in making use of another schema is to import or include that schema into the one you're
working with. You include schemas that are in the same namespace as the one you are working in:

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="URIgoeshere">

<xsd:include schemalocation="XSDFileNameGoesHere" />

</xsd:schema>

On the other hand, you import schemas that are in a different namespace from the one you are working
in:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="URIgoeshere">
<xsd:import namespace="URIgoeshere"
schemaLocation="XSDFileNameGoesHere" />

</xsd:schema>

198

XSD Schemas

So, let's suppose that we are creating a new schema for professors and want to make use of the global
<StudentGPA> element (forgive the inappropriate name) from a (hypothetical) StudentGPAL .xsd file
in our new <Professor> element. Further, suppose that we want to extend the <Professor> element
to include an additional element for the university that professor graduated from. The code to
accomplish this looks like:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.xsdrocks.com/students">
<xsd:include schemalocation="StudentGPAl.xsd"/>
<xsd:element name="Professor" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="StudentGPA" minOccurs="1" maxOccurs="1"/>
<xsd:element name="University" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element

</xsd:schema>

Note that the include statement references the StudentGPAl.xsd document that must be present in
the same location as the target namespace. Once included in this schema, the <Professor> element
references the <StudentGPA> global element in exactly the same manner as if it had been declared
within this document itself. Think of it as though you were typing them all into the same schema to
begin with, since that is actually the net effect of an include statement. Then, the additional
<University> element, which is unique to the <Professor> element, is defined after the reference to
the <StudentGPA> element.

What if the StudentGPAl . xsd document is not saved in the same location as the target namespace? In
that case, you use the import statement instead of the include statement:

<?xml version="1.0"7?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.xsdrocks.com/professors">
<xsd:import namespace="http://www.xsdrocks.com/students/"
schemaLocation="StudentGPAl.xsd" />
<xsd:element name="Professor" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ProfessorGPA" type="StudentGPAl:StudentGPA"
minOccurs="1" maxOccurs="1"/>
<xsd:element name="University" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element

</xsd:schema>

Notice that the import statement above specifies the namespace to import from, as well as the name of
the schema to import. Further note that the <ProfessorGPA> element is defined as
StudentGPAl:StudentGPA, with StudentGPAL: being the prefix as defined in the schema location.

If you would like more information about XSD structures, please see the XSD structures document on
the W3C's web site at http://www.w3.org/TR/xmIschema-1.

199

Chapter 6

Now that we have learned the basics of creating elements and attributes, and the varying ways to
structure the code, we will take a look at how to document the schema so that it is easier to understand.

Annotations

Documenting your code is as important as writing the core functionality itself. If you do not describe
what is happening so that you and others will be able to understand it later, then what good is it? XSD
provides you with a way to document your schemas in a very clean and comprehensible way —
annotations.

The <annotation> element can be used to document your schemas. You should use its
<documentation> child element to provide comments to people, and use the <appinfo> child
element to provide comments to applications. Here's an example of how an annotation might look:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Student" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ID" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:annotation>
<xsd:documentation>The Student ID uniquely identifies a student
</xsd:documentation>
<xsd:appInfo>Student Identification Number
</xsd:appInfo>
</xsd:annotation>
<xsd:element name="GPA" type="xsd:string" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Notice how the <annotation> for the ID immediately follows the element declaration line itself. The
<documentation> and <appInfo> elements must be children of the <annotation> element. You
can use either of them individually or both of them together.

It is important to note that you cannot put annotations anywhere you want in the
schema. You can only put annotations at the beginning of the content model that you
are annotating (for example immediately after a schema declaration or after an
element declaration).

The purpose of the <documentation> element is to describe what the code is doing for people looking
at the source code. On the other hand, the purpose of the <appInfo> element is to display helpful
information to the end user in the application. The <appInfo> element data is typically transformed
and displayed to the user using a stylesheet, whereas the <documentation> element is simply left as-is.

Now that you have a good handle on creating and annotating schemas, let's take a look at the data types
of XSD.

200

XSD Schemas

Data Types

Data type support is an extremely valuable feature of XSD. Data types allow for a deeper level of
validation and proper format of elements and attributes. XSD schemas support a wide range of data
types in addition to allowing you to define your own data types.

Simple Data Types

There are presently 44 simple data types in XSD that you can take advantage of. Some of these types
are built into XSD, while others are derived from these built-in types. Both simple types and their
derivations can be used in element and attribute declarations. We have already seen examples of this
when we looked at how to declare elements and attributes. In doing so, we learned that you can specify
the data type that you want the element or attribute to be by assigning a value to the type attribute, as
shown below:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Student" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ID" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="GPA" type="xsd:string" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Notice how xsd: string is specified for the type attribute of both the ID and GPA. This means that
both of these elements will accept string values. We discussed at the beginning of this chapter the reason
for including the xsd: prefix throughout your schema - so that the parser knows that the syntax you
are using belongs to the XSD language.

In building your schemas, you can assign the type attribute to any of the valid simple data types shown
in the table below. Or, as we will discuss in more detail shortly, you can create your own data types to
extend these simple types.

XSD Data Type Description

anyUri Uniform Resource Identifier (URI).
Examples: http://www.sample.com,
http://www.sample.com/index.html#1D2

base64Binary MIME-style Base64 encoded binary data.

hexBinary Hexadecimal-encoded binary data.

boolean True (1) or False (0).

byte -128 to 127.

dateTime Date in a subset of the ISO 8601 format. Time is optional. Time Zone is
optional.

Example: 2001-04-06T11:45:33.000-05:00

Table continued on following page

201

Chapter 6

XSD Data Type

Description

date

decimal

double

duration

ENTITIES

ENTITY

float

gbay

gMonth

gMonthDay

gYear

gYearMonth

ID

IDREF

IDREFS

Date in a subset of the ISO 8601 format.
Example: 2001-04-06

Positive or negative arbitrary precision decimal value. Note that, in the
Candidate Recommendation version of XSD, this was called Number
instead.

Examples: -5.34, 0, 5.34, 5000.00

Equivalent to double-precision 64-bit floating point.

Duration of time specified in years, months, days, hours, minutes, and
seconds format, as defined in the ISO 8601 standards extended format
PnYn MaDTnH nMaS. nY is the number of years, nM is the number of
months, and so on. The P is required but the other items are optional. For
example, to specify a duration of 1 year and 2 months, you would
specify: P1Y2M. To specify a duration of 1 year, 2 months, 3 days, 10
hrs, 30 minutes, and 12.3 seconds, you would specify:
P1Y2M3DT10H30M12.3S

XML 1.0 ENTITIES attribute type. ENTITIES contain a set of ENTITY
values. To retain compatibility between XSD and XML DTD 1.0s, these
should only be used with attributes.

XML 1.0 ENTITY attribute type. To retain compatibility between XSD
and XML DTD 1.0s, these should only be used with attributes.

Equivalent to single-precision 32-bit floating point.

Day in Gregorian format.
Example: --31 (every 31" day, regardless of month)

Month in Gregorian format.
Example: --06-- (every May)

Month and day in Gregorian format.
Example: --07-31 (every July 317

Year in Gregorian format.
Example: 2000

Year and month in Gregorian format.
Example: 2000-02

The ID values must be unique throughout all elements in the XML
document. This attribute is referenced by other attributes such as idref
and idrefs. To retain compatibility between XSD and XML DTD 1.0s,
these should only be used with attributes.

References the value in an ID attribute within the XML document. To
retain compatibility between XSD and XML DTD 1.0s, these should only
be used with attributes.

References multiple ID type values separated by whitespace. To retain
compatibility between XSD and XML DTD 1.0s, these should only be
used with attributes.

202

XSD Schemas

XSD Data Type

Description

Int

Integer

Language

Long

Name

NCName

negativeInteger

NMTOKEN

NMTOKENS

nonNegativelInteger
nonPositiveInteger

normalizedString

NOTATION

positivelInteger
QName
Short

String

Time

Integer. Sign is optional.
Range: -2147483648 to 2147483647.

The standard mathematical concept of integer numbers.
Range: an infinite set of negative or positive numbers.

Any valid XML Language value as defined by RFC 1766.
Example: en-US

Integer.
Range: -9223372036854775808 to 9223372036854775807.

XML 1.0 Name type.

XML Namespace NCName (an XML Name without the prefix and
colon).
Range: negative infinity to —1.

Name token value. String consisting of one word in a set of letters,
digits, and other characters in any combination. To retain
compatibility between XSD and XML DTD 1.0s, these should only
be used with attributes.

List of name tokens separated by whitespace. To retain
compatibility between XSD and XML DTD 1.0s, these should only
be used with attributes.

Range: 0 to infinity.
Range: Negative infinity to 0.

String of character data. Newline, tab, and carriage-return
characters are converted to spaces before schema processing.

XML 1.0 NOTATION attribute type. To retain compatibility between
XSD and XML DTD 1.0s, these should only be used with attributes.
Range: 1 to infinity.

XML Namespace QName.

Range: -32768 to 32767.

String of character data (characters that match Char from XML
1.0).

Time in hh:mm:ss.sss-TimeZone format. Time Zone is optional. The
time zone is based on the number of hours ahead or behind
Coordinated Universal Time (as defined in ISO 8601).

Example: 11:45:33.20-05:00 where 05:00 means 5 hours behind
Universal time

Table continued on following page

203

Chapter 6

XSD Data Type Description

Token String of character data. Like normalizedString, the newline, tab,
and carriage-return characters are converted to spaces before schema
processing. In addition, adjacent space characters are collapsed to a
single space and leading and trailing spaces are removed.

unsignedByte Unsigned byte.
Range: 0 to 255.

unsignedInt Unsigned integer.
Range: 0 to 4294967295.

unsignedLong Unsigned long.
Range: 0 to 18446744073709551615.

unsignedShort Unsigned short.
Range: 0 to 65535.

Now let's see an example of these data types in action. To invalidate the string "XSD is great!!" as
content for the <GPA> element, our schema can define a floating-point number as the only valid data
type. Here is how it looks:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Student" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ID" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="GPA" type="xsd:float"™ minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Now, if an XML document references this schema and it contains this element:
<GPA>XSD is great!!</GPA>
An XSD Parser will generate an error indicating a problem with the data type.
You can make use of the other data types in this same manner. As you can see, it is very easy to take

advantage of these data types. Since this is a relatively straightforward concept, let's move on to the
more complicated details of creating your own data types.

Creating Your Own Data Types

You can create a simple data type by deriving from any one of the 44 listed on the previous table. We
already saw an example of this concept with our StudentGPA data type that restricts the GPA to a
certain format:

204

XSD Schemas

<?xml version="1.0"7?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Student" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ID" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="GPA" type="StudentGPA"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:simpleType name="StudentGPA" minOccurs="1" maxOccurs="1">
<xsd:restriction base="xsd:string">
<xsd:length value="4"/>
<xsd:pattern value="\d{1l}.\d{2}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

Facets

In the example above, we created a new data type called StudentGPA as an extension of the existing
xsd:string simple type. We then specified the facets (Length and pattern) that we wanted to
implement to make the data type meet our objective.

In XSD, there are a number of different facets that can be specified to further restrict or define your new
data type. The available facets vary depending on the data type you are deriving your new type from.
For example, the string data type has the following facets:

Q enumeration
length
minLength
maxLength

pattern

O00U00

whitespace

Our StudentGPA data type used the length facet to specify that the GPA must contain 4 characters,
and the pattern facet to specify that the GPA must follow the particular format (for example 3.93):

<xsd:simpleType name="StudentGPA" minOccurs="1" maxOccurs="1">
<xsd:restriction base="xsd:string">
<xsd:length value="4"/>
<xsd:pattern value="\d{1l}.\d{2}"/>
</xsd:restriction>
</xsd:simpleType>

Suppose that we wanted to restrict the GPA to be one of the following values: 2.0, 2.5, 3.0, 3.5, or 4.0. In
such an instance, we could use the enumeration facet. Here's how that would look:

<xsd:simpleType name="StudentGPA" minOccurs="1" maxOccurs="1">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="2.0"/>
<xsd:enumeration value="2.5"/>
<xsd:enumeration value="3.0"/>
<xsd:enumeration value="3.5"/>
<xsd:enumeration value="4.0"/>
</xsd:restriction>
</xsd:simpleType>

205

Chapter 6

The enumeration facet requires a document to contain one of its specified values for it to be valid.
Note that, in this instance, there must be a 2.0, or a 2.5, or a 3.0, and so on. Yet, in the previous
example, we required the length to be 4 and the pattern to follow the specified format. How can we
tell when AND is being enforced, versus when OR is being enforced? The answer is simple: patterns
and enumerations create OR scenarios. When you use a pattern or enumeration facet, the value
must be one of those specified for the document element to be valid. All other facets create AND
scenarios, which means that all values must be present for the document element to be valid.

Now, let's take a look at some examples using the int data type. For starters, you should know that the
int data type has the following facets:

enumeration
fractionDigits
maxExclusive
maxInclusive
minExclusive
minInclusive
pattern

totalDigits

0000000000

whitespace

Suppose that we want to create a new data type to validate the course numbers that students are
enrolled in. Each student can be enrolled in 0 to 10 classes a semester. Further, suppose that all course
numbers are numbered in the following range: 1000 to 3000. We can use the int data type as our base
type and then restrict the range of valid values using the minInclusive and maxInclusive facets:

<xsd:simpleType name="CourseNumber" minOccurs="0" maxOccurs="10">
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="1000"/>
<xsd:maxInclusive value="3000"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:element name="Course" type="CourseNumber"/>

Now, if an XML document references this schema and it contains this element:
<Course>4000</Course>

an XSD parser will generate an error indicating a problem with the data type, because the number is out
of the allowed range.

In this section, we have only begun to scratch the surface of the ways we can use the existing XSD data
types or create our own.

For more information about XSD simple data types, or creating your own data types,
please see the XSD data types document on the W3C's web site at
http://www.w3.0org/TR/xmlschema-2.

206

XSD Schemas

Validating and Using XSD Schemas

Everything we have learned up to this point concerns the basics of writing XSD schemas. But how are
XSD schemas supported in SQL Server 2000 and other applications? What parsers are available for
validating XSD today? How can you translate existing XDR schemas into XSD? Those topics will be
covered in this section.

SQL Server Support of XSD

Presently, SQL Server 2000 only supports the XDR schema standard. It does not support the XSD
standard. However, Microsoft has announced plans to make support for XSD part of its core XML
services at some point after XSD becomes a Recommendation from the W3C. In fact, in April 2001,
Microsoft announced the availability of the MSXML Parser 4.0 Technology Preview, which supports
the Proposed Recommendation version of XSD. Thus, the official MSXML 4.0 release will have an
XSD schema validator, and a future release of Microsoft SQL Server will also support the XSD schema.

Microsoft Office XP and the Beta 2 version of Microsoft Visual Studio.Net already have some support
for XSD, so all of these factors are very good evidence that Microsoft will be providing future support
for XSD as it becomes finalized.

Validating XSD Schemas

As mentioned previously, the MSXML Parser 4.0 Technology Preview supports XSD schema
validation. There are also some validators that have been created by other parties. A number of
validators presently available can be found on the W3C's web site at
http://www.w3.0org/XML/Schema.html.

So you can either go to the Microsoft web site and download the MSXML Parser 4.0 Technology
Preview (or the release version of MSXML 4.0, once it is available) or work with one of the other
validators. The bottom line is that you have plenty of resources available to start working with and
validating your XSD schemas today.

Translating XDR Schemas into XSD Schemas

It is not possible to go from XSD to XDR with a translation tool, because of the functionality that
wouldn't be supported. However, it is possible to translate from XDR into XSD, which is most likely
what you would want to do anyway. There are already a few such translation tools available in beta
formats today. Since the XSD schema itself is not finalized, however, these tools are far from being
complete. One example of a tool to convert XDR to XSD is listed in the Microsoft .Net Framework beta
documentation. It lists an XML Schema Definition Tool (xsd. exe) with a variety of features, including
one that converts XDR to XSD. As at the writing of this book, information about the tool was present at
the following link:

http://msdn.microsoft.com/library/dotnet/cptools/cpconxmlschemadefinitiontoolxsdexe.htm

207

Chapter 6

Once XSD is finalized, there will likely be some very comprehensive conversion tools available to help
users migrate from XDR to XSD.

Important Note: On May 2, 2001, the W3C promoted XML Schema Definitions (XSD)
to the Recommendation Stage. Now that XSD is a full Recommendation, it is
effectively the worldwide standard for XML Schemas. Please consult the W3C's web
site at http://www.w3.org for the latest documentation.

Additionally, on April 30, 2001, Microsoft released the Beta 1 Version of SQL Server
2000 Web Release 2. This version of Web Release 2 provides support for XSD in SQL
Server. More information about this beta release can be found in Appendix C.

Summary

XSD schemas provide a great way to define valid instances of XML documents. They are very powerful
and more flexible than DTDs and XDR schemas. Let's review some of the key points highlighted in this
chapter:

Q XSD schemas are a powerful alternative to other technologies. They provide much richer
functionality than DTDs and XDR schemas.

XSD schemas allow you to create your own data types.
XSD schemas allow you to implement object-oriented style inheritance.

MSXML 4.0 will support XSD, and a technology preview of MSXML 4.0 that supports XSD
was made available for download on Microsoft's web site in April 2001.

O You can begin working with XSD today and can validate your schemas using the MSXML 4.0
Technology Preview, as well as a number of other schema validators.

Q There are some translation tools in beta versions right now that allow you to translate from
XDR to XSD.

Q XSD is the new worldwide vendor neutral standard for schema definitions, so you should start
becoming familiar with it today!

XSD will have a great future. The only questions that remain regard what exact syntax it will employ.
The industry has been anxiously awaiting a formal schema with this level of power and flexibility for a
long time. If all goes well, XSD will be a full Recommendation by the end of 2001. Once it becomes a
full Recommendation, more and more XSD support will be offered by applications like SQL Server. We
are already seeing XSD support in the latest software tools being developed by Microsoft today, like
Microsoft Office XP, Microsoft Visual Studio.Net, and MSXML 4.0.

Our next chapter gets us back on the SQL Server track, exploring how XML templates can be used and
why they are so beneficial.

208

XSD Schemas

209

Chapter 6

210

