
Getting Started with XML
Schemas

This chapter introduces the W3C's XML Schema Recommendation and covers the mechanisms by
which XML Schema allows us to define the elements and attributes we want to allow in our XML
documents. We will also see how we can constrain element content and attribute values to have a
particular datatype.

In particular this chapter will cover:

❑ The aims behind the W3C XML Schema specification

❑ How to create a simple XML Schema

❑ How to declare elements and attributes

❑ How to use some of the built-in simple datatypes: string, integer and date

❑ How to validate an XML document against a schema

This chapter will serve simply as a starting point for you. There are lots of other topics that you need to
understand in order to take full advantage of XML Schemas, and as we go through the chapters of this
book, you will be building up your experience and writing increasingly complex schemas.

To get you familiar with these concepts, the XML documents in this chapter do not use XML Namespaces,
and the markup we are creating does not belong to a namespace. If you wish to write documents that
make use of namespaces make sure that you read Chapter 6 before writing your schemas.

1

Chapter 1

10

Why do we Need Schemas?
XML is intended to be a self-describing data format, allowing authors to define a set of element and
attribute names that describe the content of a document. As XML allows the author such flexibility, we
need to be able to define what element and attribute names are allowed to appear in a conforming
document in order to make that document useful. Furthermore, we need to be able to indicate what sort
of content each of these elements and attributes are allowed to contain. Only then can people share the
meaning of the markup used in an XML document, be it for human or application consumption.

Sometimes authors require flexibility in what markup they can use to describe a document's content,
while at other times they may be forced to adopt a very specific structure. For example, if we were
working on an application for a publishing company, we might define a set of elements such as Book,
Chapter, Heading1, Heading2, Heading3, Paragraph, Table, CrossReference, and Diagram.
Each Book element would be allowed to contain any number of Chapter elements, which in turn
would contain Heading and Paragraph elements. The Paragraph elements may then contain text,
tables, cross references and diagrams. In such a case, the people marking up the book's content need a
flexible way of indicating what information is held within each element as no two books are going to
have exactly the same content. By contrast, if we were writing an e-commerce system, it would be the
job of an application, rather than a human, to create and process the XML documents. Each part of the
process would require a different type document, one structure for catalogs, one for purchase orders,
one for receipts, and so on. In such situations, rather than there being a requirement for flexibility, the
application would expect a predictable, rigid structure; it would need certain pieces of information in
order to fulfill any given task.

As XML becomes more widely used in applications, there is an increasing demand for support of
primitive datatypes found in languages like SQL, Java, Visual Basic or C++ (the concepts of strings,
dates, integers, and so on). XML Schema introduces a powerful type mechanism that not only allows us
to specify primitive datatypes, but also types of structures, allowing us to integrate principles of object-
oriented development such as inheritance into our schemas.

A schema defines the allowable contents of a class of XML documents. A class of
documents refers to all possible permutations of structure in documents that will still
conform to the rules of the schema.

Background to XML Schemas
When XML was created, it was written as a simplified form of an existing markup language, called
SGML, which was used for document markup. SGML, however, was so complex that it was not widely
adopted, and browser manufacturers made it clear that they were not going to support it in their
products. The simpler relative, XML, became a popular alternative, and was soon adopted by all kinds
of programmers, not just those involved in document markup. When XML 1.0 became a W3C
recommendation, it contained a mechanism for constraining the allowable content of a class of XML
document, which you are probably familiar with, in the form of Document Type Definitions or DTDs.
The syntax of DTDs, however, fell short of the requirements of those who were putting XML to new
uses, in particular data transfer, and as a result the W3C wanted to create an alternative schema
language, namely XML Schema.

Getting Started with XML Schemas

11

The W3C XML Schema Working Group has had the incredibly tough task of creating a schema
specification that would satisfy a wide range of users, from programmers to content architects, many of
whom have been waiting for XML Schema with much anticipation because they see it as a much more
powerful way to define document structures. Indeed, it has been a long time in coming, and there was a
gap of over two years between the working group releasing a set of requirements they aimed to achieve
with the new schema language, back in February 1999, and the recommendation's release in May 2001.

In the time the W3C have taken to release the XML Schema Recommendation, a number of
alternative schema technologies have been released. While this one is likely to achieve wide support
because of its endorsement by the W3C, the competing technologies offer alternative approaches to
constraining allowable contents of an XML document. This book mainly focuses on the W3C XML
Schema Recommendation, although we do look at some of the other schema efforts in Chapter 14.

The aims of the W3C XML Schema Working Group were to create a schema language that would be
more expressive than DTDs and written in XML syntax. In addition it would also allow authors to place
restrictions on the allowable element content and attribute values in terms of primitive datatypes found
in languages such as SQL and Java.

In terms of defining structure of documents, the aims included:

❑ Providing mechanisms for constraining document structures and content

❑ Allowing tighter or looser constraints upon classes of documents than those offered by DTDs

❑ The ability to validate documents composed from markup belonging to multiple namespaces

❑ Mechanisms to enable inheritance for element, attribute, and datatype definitions, so that they
can formally represent kind-of relations (for example, a car is a kind-of vehicle)

❑ Mechanism for embedded documentation

In terms of offering primitive data typing, the aims included:

❑ Support for primitive datatypes such as byte, date, and integer, as found in languages like SQL
and Java

❑ Definition of a type system that would support import and export of data as XML to and from
relational, object and OLAP database systems

❑ The ability to allow users to define their own datatypes that derive from existing datatypes by
constraining certain of their properties, such as range and length

The full requirements can be seen at: http://www.w3.org/TR/NOTE-xml-schema-req

The result is a powerful and flexible language for expressing permissible content of a class of XML
documents. The added capabilities, however, come at a cost: the resulting language is complicated,
especially when we begin to experiment with its more advanced aspects.

Chapter 1

12

The W3C XML Schema Recommendation
The W3C Recommendation for XML Schema comes in three parts:

❑ XML Schema Part 0: Primer The first part is a descriptive, example-based document, which
introduces some of the key features of XML Schema by way of sample schemas. It is easy to
read, and is a good start for getting to grips with XML Schemas and understanding what they
are capable of. It can be read at http://www.w3.org/TR/xmlschema-0/.

❑ XML Schema Part 1: Structures The next part describes how to constrain the structure of
XML documents – where the information items (elements, attributes, notations, and so on)
can appear in the schema. Once we have declared an element or an attribute, we can then
define allowable content or values for each. It also defines the rules governing schema-
validation of documents. It can be read at http://www.w3.org/TR/xmlschema-1/.

❑ XML Schema Part 2: Datatypes The third part defines a set of built-in datatypes, which can be
associated with element content and attribute values; further restricting allowable content of
conforming documents and facilitating the management of dates, numbers, and other special
forms of information by software processing of the XML documents. It also describes ways in
which we can control derivation of new types from those that we have defined. It can be read
at http://www.w3.org/TR/xmlschema-2/.

As we shall see throughout the course of this chapter and the rest of the book, there are a number of
advantages to using XML Schemas over DTDs. In particular:

❑ As they are written in XML syntax (which DTDs were not), we do not have a new syntax to
learn before we can start learning the rules of writing a schema. It also means that we can use
any of the tools we would use to work with XML documents (from authoring tools, through
SAX and DOM, to XSLT), to work with XML Schemas.

❑ The support for datatypes used in most common programming languages, and the ability to
create our own datatypes, means that we can constrain the document content to the appropriate
type required by applications, and / or replicate the properties of fields found in databases.

❑ It provides a powerful class and type system allowing an explicit way of extending and re-using
markup constructs, such as content models, which is far more powerful than the use of
parameter entities in DTDs, and a way of describing classes of elements to facilitate inheritance.

❑ The support for XML Namespaces allows us to validate documents that use markup from
multiple namespaces and means that we can re-use constructs from schemas already defined
in a different namespace.

❑ They are more powerful than DTDs at constraining mixed content models.

Getting Started with XML Schemas

13

Getting Started with XML Schemas
The best way to start learning the syntax for XML Schemas is to jump in with an example. To start with,
we will create a schema for the following simple document:

<?xml version = "1.0" ?>
<Customer>
 <FirstName>Raymond</FirstName>
 <MiddleInitial>G</MiddleInitial>
 <LastName>Bayliss</LastName>
</Customer>

A document conforming to a schema is known as an instance document, so let's have a look at an XML
Schema for this instance document; we will go through it line by line in a moment (name the file
Customer.xsd):

<?xml version = "1.0" ?>
<schema xmlns = "http://www.w3.org/2001/XMLSchema">
 <element name = "Customer">
 <complexType>
 <sequence>
 <element name = "FirstName" type = "string" />
 <element name = "MiddleInitial" type = "string" />
 <element name = "LastName" type = "string" />
 </sequence>
 </complexType>
 </element>
</schema>

XML Schema files are saved with the .xsd extension.

As you can see, the Customer.xsd schema is itself an XML document, and the root element of any
XML Schema document is an element called schema. In the opening schema tag we declare the
namespace for the XML Schema Recommendation:

<schema xmlns = "http://www.w3.org/2001/XMLSchema">

The next line indicates how we declare our first element, the Customer element:

 <element name = "Customer">
...
 </element>

As XML is intended to be a self-describing data format, it is hardly surprising that we declare elements
using an element called element, and we specify the intended name of the element as a value of an
attribute called name. In our case, the root element is called Customer, so we give this as the value of
the name attribute.

Chapter 1

14

We will come back to the complexType element that appears on the next line in just a moment, but
looking further down the schema we can see the declarations for the three other elements that appear in
the document: one called FirstName, one called MiddleInitial, and one called LastName.

 <sequence>
 <element name = "FirstName" type = "string" />
 <element name = "MiddleInitial" type = "string" />
 <element name = "LastName" type = "string" />
 </sequence>

You may be able to guess from the way in which the elements are declared, nested inside an element
called sequence, that they would have to appear in that same order in a conforming document. The
sequence element is known as a compositor, and we are required to specify a compositor inside the
complexType element – we will meet other types of compositor in Chapter 3.

In addition, the element declarations carry a type attribute, whose value is string. XML Schema
introduces the ability to declare types such as string, date and integer, as we would find in
languages such as SQL and Java; this is how we specify such types.

Let's now come back to the element we have not looked at yet, called complexType, which contains
the declarations of the elements that appear as children of the Customer element in our sample XML
document. XML Schema makes a distinction between simple types and complex types.

The Difference Between Simple and Complex Types
There are two kinds of type in XML Schema: simple types and complex types, both of which constrain
the allowable content of an element or attribute:

❑ Simple types restrict the text that is allowed to appear as an attribute value, or text-only
element content (text-only elements do not carry attributes or contain child elements)

❑ Complex types restrict the allowable content of elements, in terms of the attributes they can
carry, and child elements they can contain

Let's have a closer look at what this means.

Simple Types
All attribute values and text-only element content simply consists of strings of characters. The ability for
XML Schema to support datatypes means that we can place restrictions on the characters that can
appear in attribute values and text-only element content.

An example of such a restriction is the representation of a Boolean value, in which case XML Schema
only allows the character strings: true, false, 1, or 0. After all, an instance document should not be
allowed to use values such as "maybe" or "4" in attributes or elements that are supposed to represent a
Boolean value. Alternatively, if we wanted to represent a byte, we would only want characters that are
an integer whose value is between –128 and 127, so that 1445 would not be allowed and neither would
ff23.

An XML Schema aware processor is required to support a number of built-in simple types that are
considered common in programming languages and databases, and a number of datatypes that the
working group thought were important to XML document authors. This is why we were allowed to
specify that the content of the FirstName, MiddleInital, and LastName elements were strings
(which places very little restriction on the allowable text of the element content):

Getting Started with XML Schemas

15

 <element name = "FirstName" type = "string" />
 <element name = "MiddleInitial" type = "string" />
 <element name = "LastName" type = "string" />

In addition to the built-in simple types, XML Schema allows us to derive our own simple types that
restrict the allowable content of the built-in simple types already defined in XML Schema.

We will look into all of the built-in simple types in the next chapter. The rest of this chapter will stick to
using the built-in types of string, date, and integer.

Complex Types
Complex types define the attributes an element can carry, and the child elements that an element can
contain. Whenever we want to allow an element to carry an attribute or contain a child element, we
have to define a complex type.

The Customer element declared in the Customer.xsd example is allowed to contain three child
elements (FirstName, MiddleInitial, and LastName), and therefore needs to be a complex type.
We gave the Customer element a complex type using the complexType element nested inside the
element that declared Customer. We then declared the number of child elements the element
Customer is allowed to contain inside the complexType element and its compositor sequence, like
so:

 <complexType>
 <sequence>
 <element name = "FirstName" type = "string" />
 <element name = "MiddleInitial" type = "string" />
 <element name = "LastName" type = "string" />
 </sequence>
 </complexType>

Note that we cannot just nest the other element declarations inside each other. The following would not
be allowed:

<element name = "Customer">
 <element name = "FirstName" type = "string" />
 <element name = "MiddleInitial" type = "string" />
 <element name = "LastName" type = "string" />
</element>

This is not allowed because we need to define the complex type in order for the Customer element to
contain child elements.

The complex type defined above is known as an anonymous complex type. This is because it is nested
within the element declaration (Customer, in this case). If we wanted more than one element to contain
the same child elements and carry the same attributes, then we would create a named complex type,
which would apply the same restrictions to the content of our new element. We look at named complex
types in Chapter 3.

Chapter 1

16

Let's quickly add to the Customer element in our example XML document, by giving it an attribute
called customerID, so that we can see how we declare attributes. We want the new document to
look as follows:

<?xml version = "1.0" ?>
<Customer customerID = "24332">
 <FirstName>Raymond</FirstName>
 <MiddleInitial>G</MiddleInitial>
 <LastName>Bayliss</LastName>
</Customer>

To add the attribute we can just declare it within the complexType definition, after the closing
sequence compositor tag and just before the closing complexType tag:

<?xml version = "1.0" ?>
<schema xmlns = "http://www.w3.org/2001/XMLSchema">
 <element name = "Customer">
 <complexType>
 <sequence>
 <element name = "FirstName" type = "string" />
 <element name = "MiddleInitial" type = "string" />
 <element name = "LastName" type = "string" />
 </sequence>
 <attribute name = "customerID" type = "integer" />
 </complexType>
 </element>
</schema>

We declare an attribute using an element called attribute. As with the element declaration, it carries
an attribute called name whose value is the name of the attribute. Remember the value of an attribute is
always a simple type; in this case we want our customerID attribute to be represented as an integer, so
we can use the built-in type of integer to restrict the value of the attribute to an integer value.

Note the distinction that elements and attributes are declared, while simple and
complex types are defined.

Let's start to look at each of the schema constructs in greater depth.

Element Declarations
The declaration of an element involves associating a name with a type. Earlier, we saw how to declare
an element using an element called element, and that it's name is given as the value of the name
attribute that the element declaration carries. The type meanwhile would be a simple type if the element
had text-only content, otherwise it would be a complex type. The type of the element can be given in
one of two ways:

❑ A type definition can be anonymous, and nested inside the element declaration, as we saw
with the child elements of Customer in the first example.

❑ A type can be referred to, by putting the name of the type as the value of a type attribute, as
we have been doing with the value string.

Getting Started with XML Schemas

17

In the following example we can see a mix of the two approaches. The Address element declaration
contains an anonymous type, while the child elements are all given a simple type of string:

<element name = "Address">
 <complexType>
 <sequence>
 <element name = "Street" type = "string" />
 <element name = "Town" type = "string" />
 <element name = "City" type = "string" />
 <element name = "StateProvinceCounty" type = "string" />
 <element name = "Country" type = "string" />
 <element name = "ZipPostCode" type = "string" />
 </sequence>
 </complexType>
</element>

Here is an example of an Address element that conforms to this schema:

<Address>
 <Street>10 Elizabeth Place</Street>
 <Town>Paddington</Town>
 <City>Sydney</City>
 <StateProvinceCounty>NSW</StateProvinceCounty>
 <Country>Australia</Country>
 <ZipPostCode>2021</ZipPostCode>
</Address>

If we do not specify a type, then the element can contain any mix of elements, attributes and text. This
is known as the ur-type type in XML Schema, although you do not actually refer to it by name, it is just
the default if you do not specify a type.

Global versus Local Element Declarations
It is important to distinguish between the global and local element declarations:

❑ Global element declarations are children of the root schema element

❑ Local element declarations are nested further inside the schema structure and are not direct
children of the root schema element

Once elements have been declared globally, any other complex type can use that element declaration, by
creating a reference to it. This is especially helpful when an element and its content model are used in
other element declarations and complex type definitions, as they enable us to re-use the content model (A
content model simply refers to anything within an element declaration that affects the structure of the
element in the instance document. This could be attributes or other elements within an element).

You should be aware that, if your instance documents make use of namespaces, there are greater
differences between local and global element declarations. This is because when you use namespaces,
globally declared elements must be explicitly qualified in the instance document, whereas local
declarations should not always be qualified. We look into the issues that this introduces and the
ways in which it might affect how you write XML Schemas in Chapter 6.

Chapter 1

18

Imagine that we wanted to alter our Customer.xsd schema so that we could represent name and
address details for customers as below. Note we have also added a containing element for the name
details called Name:

<?xml version = "1.0" ?>
<Customer customerID = "242552">
 <Name>
 <FirstName>Raymond</FirstName>
 <MiddleInitial>G</MiddleInitial>
 <LastName>Bayliss</LastName>
 </Name>
 <Address>
 <Street1>10 Elizabeth Place</Street1>
 <Town>Paddington</Town>
 <City>Sydney</City>
 <StateProvinceCounty>NSW</StateProvinceCounty>
 <Country>Australia</Country>
 <ZipPostCode>2021</ZipPostCode>
 </Address>
</Customer>

We also want it to be able to use the same schema to validate details about employees. In this case the
details would be contained in an Employee element, although the child elements of each
are the same:

<?xml version = "1.0" ?>
<Employee employeeID = "133">
 <Name>
 <FirstName>Raymond</FirstName>
 <MiddleInitial>G</MiddleInitial>
 <LastName>Bayliss</LastName>
 </Name>
 <Address>
 <Street1>10 Elizabeth Place</Street1>
 <Town>Paddington</Town>
 <City>Sydney</City>
 <StateProvinceCounty>NSW</StateProvinceCounty>
 <Country>Australia</Country>
 <ZipPostCode>2021</ZipPostCode>
 </Address>
</Employee>

Seeing as both the Customer and Employee elements contain a Name element and an Address
element, both of which have the same content models, we can define the Name and Address elements
globally, and then use a reference to the global declarations inside the declarations for the Customer
and Employee elements. When we want to create a reference to a globally declared element, we use the
ref attribute on the element declaration, whose value is the name of the element that we
are referencing.

In order to use references to elements we have declared, we will qualify all of the elements defined by
XML Schema using a namespace prefix (We will look into the reasons behind this in Chapter 6). This is
what the schema looks like now:

Getting Started with XML Schemas

19

<?xml version = "1.0" ?>
<xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema">

 <xs:element name = "Customer">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref = "Name" />
 <xs:element ref = "Address" />
 </xs:sequence>
 <xs:attribute name = "customerID" type = "integer" />
 </xs:complexType>
 </xs:element>

 <xs:element name = "Employee">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref = "Name" />
 <xs:element ref = "Address" />
 </xs:sequence>
 <xs:attribute name = "employeeID" type = "integer" />
 </xs:complexType>
 </xs:element>

 <xs:element name = "Name">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "FirstName" type = "string" />
 <xs:element name = "MiddleInitial" type = "string" />
 <xs:element name = "LastName" type = "string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name = "Address">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "Street1" type = "string" />
 <xs:element name = "Town" type = "string" />
 <xs:element name = "City" type = "string" />
 <xs:element name = "StateProvinceCounty" type = "string" />
 <xs:element name = "Country" type = "string" />
 <xs:element name = "ZipPostCode" type = "string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

</xs:schema>

Firstly you will notice the use of the xs: prefix on all of the elements defined by XML Schema. This is
declared in the root schema element:

<xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema">

Next you can see that both the Customer element and the Employee element declarations contain a
reference to the Name and Address elements:

Chapter 1

20

 <xs:element name = "Employee">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref = "Name" />
 <xs:element ref = "Address" />
 </xs:sequence>
 <xs:attribute name = "employeeID" type = "integer" />
 </xs:complexType>
 </xs:element>

This enables re-use of element declarations and saves repeating the element declarations inside each
element. Any other element or complex type definition in the schema could use these globally defined
elements. It is helpful whenever we have an element that may appear in more than one place in a
document instance.

It is important to note, however, that any globally defined element can be used as the root element of a
document. The only way of enforcing only one root element in a document is to only have one globally
defined element, and to carefully nest all other element declarations inside complex type definitions.
The benefits of this approach are that we can create a structure that can be used to validate fragments of
documents without having to define separate schemas for each fragment, and that it allows us to define
one schema for several classes of document. So, we would be able to validate the following document
against this schema:

<?xml version = "1.0" ?>
<Address>
 <Street1>10 Elizabeth Place</Street1>
 <Town>Paddington</Town>
 <City>Sydney</City>
 <StateProvinceCounty>NSW</StateProvinceCounty>
 <Country>Australia</Country>
 <ZipPostCode>2021</ZipPostCode>
</Address>

This document is considered valid because the Address element has been declared globally. This may
not be desirable, and we will see other approaches as we go through the book. We look into this topic
more in Chapter 7.

Note that an element declaration that carries a ref attribute cannot also carry a name attribute, nor can
it contain a complex type definition.

Element Occurrence Indicators
By default, when we declare an element in an XML Schema it is required to appear once and once only.
However there are times when we might want to make the appearance of an element in a document
optional. For example, we might want to make the MiddleInitial child element of our Customer
element optional in case the customer does not have a middle name. Indeed there may be times when
we want an element to be repeatable; for example, we might want to allow several MiddleInitial
elements if the customer has several middle names.

To replicate the functionality offered by the cardinality operators in DTDs, namely ?, *, and +, which
indicate how many times an element could appear in an instance document, XML Schema introduces
two occurrence constraints which take the form of attributes on the element declaration: minOccurs
and maxOccurs. Their value indicates how many times the element can appear, and are a lot simpler to
use than the cardinality operators in DTDs because we just specify a minimum and maximum number
of times that an element can appear. The maxOccurs attribute can also take a value of unbounded,
which means that there is no maximum number of times the element can appear in the
document instance.

Getting Started with XML Schemas

21

The following table shows the mapping of DTD cardinality operators to the equivalent values of
minOccurs and maxOccurs XML Schema attributes:

Cardinality

Operator

minOccurs

Value

maxOccurs

Value

Number of Child Element(s)

[none] 1 1 One and only one

? 0 1 Zero or one

* 0 unbounded Zero or more

+ 1 unbounded One or more

Let's look at some examples. To start, if we want an element to appear once and once only, then we do
not have to add anything to the declaration, as the default values for both attributes if not included are
1. However, for clarity we could explicitly state that the MiddleInitial element must appear once
and only once:

<element name = "MiddleInitial" type = "string" minOccurs = "1"
 maxOccurs = "1" />

If we wanted to make the element optional, so that the element could appear but is not required to do
so, and that when it did appear it could only appear once we could use the following:

<element name = "MiddleInitial" type = "string" minOccurs = "0"
 maxOccurs = "1" />

If we wanted to require at least one MiddleInitial element, yet allow no more than 4 we could use
the following:

<element name = "MiddleInitial" type = "string" minOccurs = "1"
 maxOccurs = "4" />

If we wanted to make sure that there were at least two MiddleInitial elements, but that there were
no upper limits on the number of times the element could appear, we could use the following:

<element name = "MiddleInitial" type = "string" minOccurs = "2"
 maxOccurs = "unbounded" />

Note that you cannot declare minOccurs and maxOccurs on global elements, only on
local element declarations.

While we cannot use the minOccurs and maxOccurs attributes on a global element declaration, we
can add them to a local element declaration that references a global declaration using the ref attribute:

Chapter 1

22

<?xml version = "1.0" ?>
<schema>

 <element name = "Customer">
 <complexType>
 <sequence>
 <element ref = "FirstName" minOccurs = "0" maxOccurs = "1" />
 <element ref = "MiddleInitial"
 minOccurs = "0" maxOccurs = "unbounded" />
 <element ref = "LastName" minOccurs = "1" maxOccurs = "1" />
 </sequence>
 <attribute name = "customerID" type = "integer" />
 </complexType>
 </element>

 <element name = "FirstName" type = "string" />
 <element name = "MiddleInitial" type = "string" />
 <element name = "LastName" type = "string" />

</schema>

Here the FirstName is optional, the MiddleInitial element is optional although it can appear as
many times as the document author requires, and the LastName is required.

Value Constraints on Element Content – Default and Fixed Content
With DTDs we could supply a default attribute value for an attribute that was left empty in an instance
document, but there was no equivalent mechanism for elements. With XML Schema, we can supply a
default value for text-only element content.

If we specify a default value for an element, and that element is empty in the instance document, an
XML Schema aware processor would treat the document as though it had the default value when it
parses the document. In the following example we have a fragment of an XML instance document,
which is used to profile a member's subscription to a web site:

<MailOut>
 <Subscribe></Subscribe>
</MailOut>

We want the default content of the Subscribe element to be yes, so we add a default attribute to
the element declaration, whose value is the simple element content we want:

<element name = "Subscribe" type = "string" default = "yes" />

Once parsed, if the Subscribe element were empty in the instance document, the schema processor
would treat the Subscribe element as if it had contained the string yes.

There is another attribute that we can add to an element declaration, called fixed. When fixed is
used on an element declaration, the element's content must either be empty (in which case it behaves
like default), or the element content must match the value of the fixed attribute. If the document
contained a value other than that expressed by the fixed attribute it would not be valid.

Getting Started with XML Schemas

23

For example, if we wanted a SecurityCleared element to either contain the boolean value of true,
or if empty to be treated as if it contains true, we would use the fixed attributes like this:

<element name = "SecurityCleared" type = "boolean" fixed = "true" />

Therefore, the following would be valid:

<SecurityCleared>true</SecurityCleared>

As would either of these:

<SecurityCleared></SecurityCleared>
<SecurityCleared />

In either of the above cases, the processor would treat the element as if it had the content true.
However, the three examples below would not be valid:

<SecurityCleared>false</SecurityCleared>
<SecurityCleared>no</SecurityCleared>
<SecurityCleared><UserID>001</UserID></SecurityCleared>

It should be noted that the value of the element is measured against the permitted values for the
datatype. We will look at datatypes in more detail in the next chapter, but the examples here are not
valid because the only allowed values for a boolean whose value is true, are the string true or the
value 1. The following would be a valid example, because 1 is an allowed value for the datatype:

<SecurityCleared>1</SecurityCleared>

This would be helpful in preventing any documents being validated if they explicitly contained any
content other than the string true.

Note that we could not add both a default and a fixed attribute to the same element declaration.

Together the default and fixed attributes are known as value constraints, because
they constrain the values allowed in element content.

Attribute Declarations
We declare attributes in a similar way to declaring elements. The key differences are:

❑ They cannot contain any child information items. Attribute values are always simple types.

❑ They are unordered; we cannot specify the order in which attributes should appear on a
parent element.

Chapter 1

24

This means that the value of the type attribute on an attribute declaration is always a simple type – a
restriction upon the value of the attribute. If we do not specify a type, then by default it is the simple
version of the ur-type definition, whose name is anySimpleType. This represents any legal character
string in XML that matches the Char production in the XML 1.0 Recommendation, but we need to be
aware that if we need to use characters such as angled brackets ([]) or an ampersand (&), these should
be escaped using the escape characters or numeric character references defined in the XML
1.0 Recommendation.

Attributes are added to an element inside the complex type definition for that element; they are added
after the content of the element is defined within the complex type:

<?xml version = "1.0" ?>
<schema>
 <element name = "Customer">
 <complexType>
 <sequence>
 <element name = "FirstName" type = "string" />
 <element name = "MiddleInitial" type = "string" />
 <element name = "LastName" type = "string" />
 </sequence>
 <attribute name = "customerID" type = "integer" />
 </complexType>
 </element>
</schema>

Here we can see that we have added the customerID attribute to the Customer element by including
its declaration at the end of the complex type.

Global versus Local Attribute Declarations
As with element declarations, attribute declarations can either be local or global. If they are global
declarations they are direct children of the schema element, meaning that any complex type definition
can make use of the attribute.

As with global and local element declarations, you should be aware that, if your instance documents
make use of namespaces, there are greater differences between local and global attribute declarations.
This is because globally declared attributes must be explicitly qualified in the instance document,
whereas local declarations should not always be qualified. We look into the issues that this
introduces and the ways in which it might affect how you write XML Schemas in Chapter 6.

Occurrence of Attributes
By default, when we declare an element to carry an attribute, its presence in an instance document is
optional. While there is no provision for minOccurs and maxOccurs attributes on our attribute
declarations, because an attribute can only appear once on any given element, we might want to specify
that an attribute must appear on a given element.

Getting Started with XML Schemas

25

If we want to indicate that an attribute's presence is required, or explicitly state that an attribute is
optional, we can add an attribute called use to the attribute declaration, which can take one of the
following values:

❑ required when indicating that an attribute must appear

❑ optional when it can either appear once or not at all (the default value)

❑ prohibited when we want to explicitly indicate that it must not appear

Note that we cannot add the use attribute to globally declared attributes.

For example, if we just want to ensure that an attribute is present on the element, we can just add the
use attribute to the attribute declaration with a value of required:

<attribute name="dateReceived" use="required" />

If the attribute is optional, we can use the value of optional, although this is not required as it is the
default value:

<attribute name="child" use="optional" />

Value Constraints on Attributes
As we would expect from working with attributes in DTDs, we can supply default and fixed content for
an attribute's value in the XML Schema. This works rather like the value constraints on the
element declarations.

If an attribute is not included in an element in an instance document, we can use the schema to tell the
processor: "When processing the document, treat the element as if it had this attribute with the value
given in the schema". We give an attribute a default value by adding the default attribute to the
attribute declaration, like this:

<attribute name = "currency" default = "US$" />

If you have a default value for an attribute, then the use value must be set to
optional.

Imagine that we wanted to be able to validate an XML document in the following format:

<CreditAccount currency = "US$">
 <AccountName>Ray Bayliss</AccountName>
 <AccountNumber>27012</AccountNumber>
 <Amount>200.00</Amount>
</CreditAccount>

In this example, we want to ensure that if the CreditAccount element does not have the currency
attribute in the instance document, the processor acts as though the attribute is there, and that its value
is US$. Here is an extract from a schema that will ensure this behavior:

Chapter 1

26

<element name = "CreditAccount">
 <complexType>
 <sequence>
 <element name = "AccountName" type = "string" />
 <element name = "AccountNumber" type = "integer" />
 <element name = "Amount" type = "string" />
 </sequence>
 <attribute name = "currency" default = "US$" />
 </complexType>
</element>

If we want to indicate that the value of an attribute is the same as the value we prescribe in the schema,
whether or not the attribute is present in the instance document, we can use the fixed attribute on the
element declaration, like so:

 <attribute name = "currency" fixed = "US$" />

If the attribute does not appear in the document, the value of fixed would act as the default
attribute, and the processor would treat the document as though the attribute were there and had
the value specified.

For example, if the CreditAccount element was declared to have the following attribute declaration:

<element name = "CreditAccount">
 <complexType>
 <sequence>
 <element name = "AccountName" type = "string" />
 <element name = "AccountNumber" type = "integer" />
 <element name = "Amount" type = "string" />
 </sequence>
 <attribute name = "currency" fixed = "US$" />
 </complexType>
</element>

Then the following document instance would not be valid because the currency attribute has a value of
AUS$ not US$:

<CreditAccount currency = "AUS$">
 <AccountName>Ray Bayliss</AccountName>
 <AccountNumber>2701 2202</AccountNumber>
 <Amount>200.00</Amount>
</CreditAccount>

If the attribute were missing, the schema processor would treat the CreditAccount element as though
it was carrying a currency attribute whose value is US$.

Note that you could not add both a default and a fixed attribute to the same attribute declaration.

Together the default and fixed attributes are known as value constraints, because
they constrain the value of the attribute.

Getting Started with XML Schemas

27

Annotations
XML Schema offers two kinds of annotation to a schema, both of which appear as children of an
element called annotation:

❑ documentation is rather like the ability to add comments. Using the documentation
element, we can add information that will help us and others understand the intended purpose
of our documents.

❑ appinfo offers a place in which we can provide additional information to a
processing application.

As with all areas of programming, the use of comments is very important (even if they can be a nuisance
to add at the time of writing). Of course they help the original author when they come back to use the
schema later, but their use is also important for anyone else wanting to use the schema to help them
understand the constructs – whether they are authoring documents according to the schema or writing
an application to process documents according to the schema. As such, they will be especially helpful if
the document author or programmer is not used to the schema syntax.

If we intend that others should use our schema, we should provide enough information in
documentation elements to clarify any ambiguity regarding the intended purpose of an element or type.
Additional information may also help users get to grips with a schema quicker.

Good use of documentation could make the difference in getting our schema adopted by a group of
users over an alternative schema that is not as well documented.

DTD authors are allowed to use comments using the same syntax used for XML comments:

<!-- comment goes here -->

Indeed, we can include comments in this form in an XML Schema because it is an XML document
itself, but this is not a good way of documenting the XML Schema for these reasons:

❑ By putting documentation in a documentation element, you can add structured
documentation including markup such as XHTML, whereas XML comments cannot.

❑ You can easily make the schema self-documenting by adding a stylesheet to it.

❑ XML parsers can ignore comments. By providing an explicit documentation element, the
information becomes available to any processing application. If the processing application is
an authoring tool, it can pass on information from the documentation element to document
authors allowing them to use the markup as it is intended

The annotation element can appear at the beginning of most schema constructs, although it will most
commonly be used inside element, attribute, simpleType, complexType, group, and schema
elements. Where we place the annotation and its child documentation will affect what the
documentation applies to.

In our simple Customer example that we have been looking at through this chapter, we could provide
copyright and author information at the root of the schema, and indicate to document authors that the
MiddleInitial element is optional, although if the Customer has a middle name we should use it:

Chapter 1

28

<?xml version = "1.0" ?>
<xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema">
 <xs:annotation>
 <xs:documentation>
 Schema for customer name information.
 Used in Professional XML Schemas
 Copyright Wrox Press Ltd 2001, all rights reserved
 1102 Warwick Road, Acocks Green, Birmingham, B27 6BH. UK
 </xs:documentation>
 </xs:annotation>
 <xs:element name = "Customer">
 <xs:annotation>
 <xs:documentation>
 MiddleInitial is optional, but should be used if the customer has a
 middle name to help distinguish between customers with like names.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:group ref = "NameGroup" />
 </xs:complexType>
 </xs:element>
 <xs:group name = "NameGroup">
 <xs:sequence>
 <xs:element name = "FirstName" type = "xs:string" />
 <xs:element name = "MiddleInitial" type = "xs:string" />
 <xs:element name = "LastName" type = "xs:string" />
 </xs:sequence>
 </xs:group>
</xs:schema>

The appinfo child of the annotation element is designed to pass information to a processing
application, stylesheet, or other tool. This will be a particular advantage to schema users if XML
Schema compliant parsers implement a way of passing this information to an application, because those
who used XML 1.0 processing instructions to pass information to the processing application often had to
write custom parsers in order to do this. Therefore, a lot of developers who could have made use of
processing instructions ended up putting that information in application code, making the resulting
application less flexible. By allowing information to be put into the appinfo element, programmers can
either pass information to the application about how the section of a conforming document should be
processed, or they can add extra code inside the appinfo elements.

The appinfo element is subject to the same rules for appearing in an XML Schema as the
documentation element, as they are both contained in the annotation element. This means that it
can be used within most schema constructs. In the following example we have nested some script inside
the appinfo element, which is intended to indicate to an application what action to take, depending
upon which of a choice of two elements a document instance contains:

 <xs:group name="CreditOrDebitGroup">
 <xs:annotation>
 <xs:appinfo>
 if (currentNode.firstChild != "Credit")
 docParser.load(debitURL);
 else
 document.write("Your account will be credited within 24
 hours.");

Getting Started with XML Schemas

29

 </xs:appinfo>
 </xs:annotation>
 <xs:choice>
 <xs:element name = "Credit" type = "CreditType" />
 <xs:element name = "Debit" type = "DebitType" />
 </xs:choice>
 </xs:group>

The script buried inside the appinfo element can be passed to an application that is using the schema
to validate an instance of the document. In this case, the script in the appinfo element can be passed to
a processing application to indicate how to handle each element in the choice group, depending upon
which element the document contains.

We look at annotation in more detail in Chapter 10 on Schemas and XSLT. There is also an
interesting example of using the appinfo element to contain Schematron rules in Chapter 14.

Validating an Instance Document
Having understood some of the basics for writing XML Schemas, we should look at how we validate
document instances. You may have noticed that none of the sample XML documents in this chapter have
indicated a link to the XML Schema they are supposed to correspond to. They have not included an
equivalent of the Document Type Declaration (whether it refers to inline definitions or an external DTD).
This is because there is no direct link of any kind between an instance document and its XML Schema.

A document author can indicate where a copy of the schema they used to write the document can be
found using the xsi:schemaLocation attribute, whose value is a URL, but there is no requirement for
the processor to use the indicated schema. For example we could use the following to indicate where the
Customer.xsd file can be found:

<?xml version = "1.0" ?>
<Customer xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://www.wrox.com/ProXMLSchemas/
 Customer.xsd">
 ...
</Customer>

Note that we have had to declare the XML Schema for Instance Documents namespace and its prefix
xsi: in order to use the schemaLocation attribute (as the schemaLocation attribute is defined in
that namespace).

Parsers can ignore or override the suggestion in the schemaLocation attribute; they
may decide to use a different schema or use a cached copy of the suggested schema.

Sometimes it is helpful to be able to validate a document against a different schema than that which it
was authored against. Therefore we can leave it up to the program that hands the XML document to the
parser to say which schema to use to validate it.

Chapter 1

30

Note also that we have not so far been indicating the intended namespace to which our schema belongs.
This means that the markup we have been creating does not belong to a namespace. In this case we
need to use the xsi:noNamespaceSchemaLocation attribute on the root element, like this:

<?xml version = "1.0" ?>
<Customer xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation = "Customer.xsd">
...
</Customer>

This indicates to the parser where it can find a copy of the schema that doesn't belongs to a namespace.

How the XML Schema Recommendation Specifies Validity
The XML Schema Recommendation does not indicate how an XML Schema aware processor should
validate a document, so before we look at validation it is worthwhile taking a moment to understand
how the XML Schema Recommendation determines validity. The XML Schema Recommendation is
written in terms of an abstract model (rather like the DOM Recommendation). This corresponds to
information items as defined in the XML Information Set.

The purpose of the XML Information Set (or infoset) is to provide a consistent set of definitions that can
be used in other specifications that refer to information held within a well-formed XML document.

Any well-formed XML document has an information set (as long as it also conforms to the XML
Namespaces Recommendation). This in turn means that an XML Schema and all instance documents
must be well-formed in order for them to be processed by a parser. After all, a document that is not
well-formed does not have an information set.

The infoset presents an XML document's information set as a modified tree. We should be clear
however, that the XML Schema Recommendation does not require that an XML Schema aware
processor's interfaces make the infoset available as a tree structure – the document may just as equally
be accessed by an event-based approach (such as that implemented in SAX processors) or a query-based
interface. However, the term information set can be treated as analogous to the term tree.

An XML document's information set consists of a number of information items, each of which can be
treated as analogous to a node on the tree. An information item is an abstract representation of some
part of a document, and each information item has a set of associated properties. At minimum, a well-
formed XML document will have a document information item. There are 14 information items in all;
here are the ones that we are most concerned with:

❑ The document information item is the unique element in which all other markup is nested
within a well-formed XML document. In the case of an XML Schema document, the
document information item would correspond to the schema element.

❑ An element information item exists for every element that appears in an XML document.

❑ An attribute information item exists for each attribute, whether specified or defaulted, of each
element in the document.

❑ A character information item exists for each data character in the document, whether literally
or as a character reference, or within a CDATA section. Each character is a logically separate
information item, although many processing applications chunk characters into larger groups.

❑ A namespace information item exists for each namespace that is in the scope for that element.

Getting Started with XML Schemas

31

By talking in terms of an abstract tree representation, the schema specification can then ensure that each
information item in an instance document respects the constraints imposed by the corresponding
information item in the schema. This is known as local schema-validity.

There is a second level of schema validity, which represents the overall validation outcome for each
item. This is where the local schema-validity of an information item corresponds with the results of the
schema-validity assessments performed upon its descendents, if it has any. So, a parent element is
checked against the schema-validity assessments of its child information items.

Therefore, the XML Schema Recommendation does not have to worry about how the validating
processor is implemented. As long as the information items are locally schema-valid, and they
correspond with child information items, an instance document will be valid. At each stage,
augmentations (in the form of properties) may be added to the information items in the information set
to record the outcome and help the processor achieve its task.

So, each of the components that make up any schema are used to determine whether an element or
attribute in an instance document is valid. In addition, a processor may check augmentations (such as
default values) placed upon those elements, attributes, and their descendents.

Validating with XSV
At the time of writing, XML Schema has only recently become a full W3C recommendation, and there
are limited tools available for validating instance documents using the final recommendation. A
proliferation of compliant tools is expected to follow, but many are in still in beta version. Check out
Appendix D for full discussion of XML Schema tools and XML Schema-compliant parsers. For now,
however, we are just going to focus on one, XSV.

XSV (XML Schema Validator) is an ongoing open source project, developed at the University of
Edinburgh in the UK by Henry Thompson and Richard Tobin (Henry Thompson is also co-author of
the XML Schema Recommendation, Part 1). Written in Python, it is available for download either as
source, or as a Win32 executable. Alternatively, you can use it as an online utility. XSV is available
from:

❑ http://www.ltg.ed.ac.uk/~ht/xsv-status.html (for download)

❑ http://www.w3.org/2001/03/webdata/xsv (to use online)

The easiest way to use XSV is via the online web form. You can validate schemas on their own by
simply uploading the file from your own machine, but if you want to validate instance documents
against your schema, then you need to be able to make them available online. If this is difficult for
you – if you are behind a firewall for example – then you may prefer to download XSV and install
it on your own machine.

Since this is ongoing work, there are frequent updates to the tool, and full details concerning which
parts of the XML Schema recommendation are implemented is available from the first URL above. At
the time of writing, this tool appears to be the one most fully conformant with the W3C
recommendation.

Warning: One of the main limitations of XSV at the time of writing is its lack of support for
validating simple types. The only checks that XSV makes on simples types are on length and
enumerations.

Chapter 1

32

The download comes in the form of a self-installing executable for Win32. If you're working on a Unix
platform, however, you'll need to download and compile the source files. Alternatively, you could check
out some of the tools discussed in Appendix D, such as Turbo XML from TIBCO Extensibility Solutions.

Validating a Schema
Let's start by validating a simple schema, name.xsd:

<?xml version = "1.0" encoding = "UTF-8"?>
<xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema">
 <xs:element name = "Name">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "firstName" type = "xs:string" />
 <xs:element name = "middleInitial" type = "xs:string" />
 <xs:element name = "lastName" type = "xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

If you try validating this schema online, then you should see something like this:

Using the downloaded version of XSV, you can check that this is a valid schema by simply running it
from the command line with a -i flag:

Getting Started with XML Schemas

33

(Note that you'll need to have the folder in which XSV is installed included in your PATH variable). The
output here isn't immediately obvious, so let's take a quick look at it (see the screenshot below). You can
see that we are looking at a schema file here rather than an XML instance document since it says
instanceAccessed='false', and that the target is [standalone schema assessment]. Note
that no schema errors are listed.

If you are running IE5 or above, you get a more user-friendly version of this and you can redirect the
XML output to another file, including a stylesheet for display, with the command:

> xsv -o xsv-out.xml -s xsv.msxsl -i name.xsd

If you have MSXML 3 installed, you should replace xsv.msxsl with the XSLT 1.0 compliant version
of the stylesheet, xsv.xsl. You can then view the result in your browser:

Note that you can use xsv -? for information on all the possible flags.

So that covers the basic ways of using XSV. Now let's take a look at some of the error messages that
occur if our schema isn't error free. Suppose, for example, we make a simple typographical mistake,
such as spelling the name attribute wrongly, or forgetting to close one of the elements:

<?xml version = "1.0" encoding = "UTF-8"?>
<xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema">
 <xs:element name = "Name">
 <xs:complexType>
 <xs:sequence>
 <xs:element nsme = "firstName" type = "xs:string" />
 <xs:element name = "middleInitial" type = "xs:string" />
 <xs:element name = "lastName" type = "xs:string" />
 </xs:sequence>
 <xs:complexType>
 </xs:element>
</xs:schema>

In this case, XSV warns us that we have an undeclared attribute nsme, on our element element, and
that we have a complexType declaration out of place:

Chapter 1

34

The reason the second error message takes this form is that XSV thinks that because we have forgotten
to add a / in our closing tag, we are trying to nest a second complexType element inside the first,
which is not allowed. Note that XSV also gives us the line number of each error. While the mistakes
may be quite obvious in our simple schema, this information becomes very helpful when working with
more complex examples.

Validating an Instance Document
Now let's try validating an instance document against our simple schema:

<?xml version = "1.0" encoding = "UTF-8"?>
<Name xmlns:xsi=" http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="name.xsd">
 <firstName>John</firstName>
 <middleInitial>J</middleInitial>
 <lastName>Johnson</lastName>
</Name>

Here, we have used the xsi:noNamespaceSchemaLocation attribute to indicate the location of the
schema document to which the XML instance document conforms. In this case, it is in the same
directory. Note that if you're validating this with the online version of XSV, both the XML file and the
schema file need to be accessible over the web. Here's what the results look like for this file, name.xml:

Getting Started with XML Schemas

35

The things to look out for here are the statement that there are no schema-validity problems in the target,
and that the "Validation was strict": this means that the instance document has correctly validated against
the schema. If you see the validation described as "lax", then you'll know that your document has not been
validated, though it may be well formed. Note also the line at the bottom of the output, "Attempt to import
a schema document from http://apache.wrox.co.uk/name.xsd for no namespace succeeded". This
means that XSV has successfully found and loaded the correct schema document.

Let's take a look at an instance document with some problems, so you can see how XSV reports errors
in document validation. Here, we've simply slipped in an extra title element that is not declared in
our schema:

<?xml version = "1.0" encoding = "UTF-8"?>
<Name xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="name.xsd">
 <title>Dr</title>
 <firstName>John</firstName>
 <middleInitial></middleInitial>
 <lastName>Johnson</lastName>
</Name>

Let's try this one with our local version of XSV. In this case, we don't use the -i flag, as we are
validating an instance document, not a schema, so we use the command:

> xsv -o xsv-out.xml -s xsv.msxsl name_2.xml

And this is what the output looks like:

In the first part of the output, we see the line, "2 schema-validity problems were found in the target". If
you look at the section below, where the problems are listed in detail, you can clearly see that there is a
title element that is not allowed according to the schema, and XSV was expecting the firstName
element to appear in its place. The first number after the file name (in this case 4) indicates the line
number on which the error occurred. Again, this information can be very useful when
debugging schemas.

Chapter 1

36

The output prefixes all of the element names with {None} to indicate that these elements are not
part of a namespace. We'll be seeing how to create schemas with a target namespace in Chapter 6.

In the final part of this chapter, we'll be tying together the ideas that we have met so far in a slightly
more complex example.

Example Schema: Delivery Receipt
In this example, we'll see how to create a schema for a delivery receipt called DeliveryReceipt.xsd.
The schema contains constructs for names, addresses, and delivery items.

The delivery receipt is held within a root element called DeliveryReceipt, which has two attributes,
deliveryID and dateReceived. The customer's name and address are then held within an element
called Customer. Finally, the delivered items will be held within an Items element.

Here is a sample document marked up according to the DeliveryReceipt.xsd schema called
DeliveryReceipt.xml:

<?xml version = "1.0" ?>
<DeliveryReceipt deliveryID = "44215" dateReceived = "2001-04-16"
 xsi:noNamespaceSchemaLocation = "http://file_Location/DeliveryReceipt.xsd"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance">
 <Customer>
 <Name>
 <FirstName>Ray</FirstName>
 <MiddleInitial>G</MiddleInitial>
 <LastName>Bayliss</LastName>
 </Name>
 <Address>
 <AddressLine1>10 Elizabeth Place</AddressLine1>
 <AddressLine2></AddressLine2>
 <Town>Paddington</Town>
 <City>Sydney</City>
 <StateProvinceCounty>NSW</StateProvinceCounty>
 <ZipPostCode>2021</ZipPostCode>
 </Address>
 </Customer>
 <Items>
 <DeliveryItem quantity = "2">
 <Description>Small Boxes</Description>
 </DeliveryItem>
 </Items>
</DeliveryReceipt>

Note how we indicate to a parser that it will be able to find a schema to validate the document using the
xsi:noNamespaceSchemaLocation attribute in the root element. We use this because the constructs
in the schema do not belong to a namespace. In order to use this attribute, we also need to declare the
namespace for the XML Schema for instance documents:

Getting Started with XML Schemas

37

<DeliveryReceipt deliveryID = "44215" dateReceived = "2001-04-16"
 xsi:noNamespaceSchemaLocation = "http://file_Location/DeliveryReceipt.xsd"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance">

Now let's see the schema that we use for our Delivery Receipt documents. The schema is called
DeliveryReceipt.xsd:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema">
 <xs:element name = "DeliveryReceipt">
 <xs:complexType>
 <xs:sequence>

 <xs:element name = "Customer">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref = "Name" />
 <xs:element ref = "Address" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name = "Items">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref = "DeliveryItem"
 minOccurs = "1" maxOccurs = "unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 </xs:sequence>
 <xs:attribute name = "deliveryID" type = "xs:integer" />
 <xs:attribute name = "dateReceived" type = "xs:date" />
 </xs:complexType>
 </xs:element>

 <xs:element name = "Name">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "FirstName" type = "xs:string" />
 <xs:element name = "MiddleInitial" type = "xs:string"
 minOccurs = "0" maxOccurs = "1" />
 <xs:element name = "LastName" type = "xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name = "Address">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "AddressLine1" type = "xs:string" />
 <xs:element name = "AddressLine2" type = "xs:string"
 minOccurs = "0" maxOccurs = "1" />
 <xs:element name = "Town" type = "xs:string" />

Chapter 1

38

 <xs:element name = "City" type = "xs:string"
 minOccurs = "0" maxOccurs = "1" />
 <xs:element name = "StateProvinceCounty" type = "xs:string" />
 <xs:element name = "ZipPostCode" type = "xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name = "DeliveryItem">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "Description" type = "xs:string" />
 </xs:sequence>
 <xs:attribute name = "quantity" type = "xs:integer" />
 </xs:complexType>
 </xs:element>

</xs:schema>

There are a few things we should note about this schema:

❑ We have defined the Name, Address, and DeliveryItem elements globally, which also
means that this schema could be used to validate documents only containing these elements

❑ We build the Customer element's content model using references to the globally declared
Name and Address elements

Let's take a closer look at the schema. We start off declaring the namespace for XML Schema, which we
use to prefix all of the elements defined by the XML Schema Recommendation:

<xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema">

We then define the root element DeliveryReceipt. Because it contains Customer and Items
element elements (as opposed to being a text-only element), we have had to associate it with complex
type using the complexType element. This also contains a sequence compositor, requiring that the
Customer element appear before the Items element.

Between the closing sequence and complexType elements, we declare the two attributes that are
carried by the DeliveryReceipt element: deliveryID, whose type is an integer, and
dateReceived, whose type is a date type:

 <xs:element name = "DeliveryReceipt">
 <xs:complexType>
 <xs:sequence>

 <xs:element name = "Customer">
 ...
 </xs:element>

 <xs:element name = "Items">
 ...
 </xs:element>

Getting Started with XML Schemas

39

 <xs:attribute name = "deliveryID" type = "xs:integer" />
 <xs:attribute name = "dateReceived" type = "xs:date" />
 </xs:complexType>
 </xs:element>

Inside the declaration of the DeliveryReceipt element we have a declaration of the Customer and
Items elements. Both Customer and Items contain child elements, so we need to use a complexType
element inside each of them, along with a compositor, which is the sequence element, to indicate the
order in which they can appear. Customer and Items are made up of references to globally declared
elements using the ref attribute:

 <xs:element name = "Customer">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref = "Name" />
 <xs:element ref = "Address" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name = "Items">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref = "DeliveryItem"
 minOccurs = "1" maxOccurs = "unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

We have already seen how we defined the Name and Address elements earlier in the chapter. The third
globally declared element is the DeliveryItem element, which can occur one or more times. Note that
we had to declare the occurrence constraints on the reference to the element, however, because you
cannot add them to global declarations.

The DeliveryItem element also holds a quantity element, which is declared between the closing
sequence and complexType elements. The quantity attribute has a type of integer:

 <xs:element name = "DeliveryItem">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "Description" type = "xs:string" />
 </xs:sequence>
 <xs:attribute name = "quantity" type = "xs:integer" />
 </xs:complexType>
 </xs:element>

We specify the simple built-in string datatype on the Description element to restrict the allowable
content of text-only elements; if we not did associate them with a type they could hold any well-formed
combination of elements, attributes and characters that we had defined in the schema.

Chapter 1

40

Summary
In this chapter we have looked at the basics of the W3C XML Schema syntax, and how we can declare
which elements and attributes are allowed to appear in our XML documents. We have seen that in
order to declare an element or an attribute, we must associate its name with a type, and how XML
Schema introduces two categories of types:

❑ Simple types: which restrict text-only element content and attribute values

❑ Complex types: which are required to indicate when an element contains child elements and
carries attributes

We have briefly touched on some of the other features that make XML Schema such a powerful
language:

❑ The built-in types such as string, date and integer, which will make integration of XML with
applications and data sources a lot easier

❑ The annotation mechanism for commenting and passing information to
processing applications

We also alluded to some of the more complicated features we will be seeing in coming chapters, such as
the use of namespaces, named complex types and different compositors.

Having addressed the basics of the element and attribute declarations and the differences between
simple and complex types in XML Schema, you can go on to look at the built-in types in more depth in
the next chapter. In Chapter 3, we'll move on to see how we can build more complicated structures.

Getting Started with XML Schemas

41

Chapter 1

42

