
Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

From XSLT to XQuery
This chapter presents XQuery to programmers with some experience with
XSLT stylesheets. XQuery and XSLT have distinct goals but share several
common features. Most of this "common ground" makes it easier to
understand XQuery if you have XSLT programming experience.

To illustrate the similarity between the two languages we will take the
XQuery use cases as an introduction to XQuery features, and then compare
these constructs with equivalent or similar XSLT stylesheet declarations. We
also will discuss the main differences between these two languages, making it
a little easier to decide whether to apply XSLT or XQuery to solve a
programming problem.

By the end of this chapter you will:

� Know the design goals for each language

� Distinguish the processing model used in XSLT and XQuery
processors

� Understand the key conceptual differences between the languages

� Be able to compare XQuery built-in operators and their XSLT
counterparts

� Be able to translate XSLT stylesheets to XQuery expressions

138

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

XSLT
Processor

formatted
document

source
document

Source
Tree

Output
Tree

Presenting XQuery
Before showing language use cases and comparing operators and language
processing models it's probably a good idea to take a 30,000 feet view of
XSLT and XQuery, and examining their most significant features. Even when
working on a day-to-day basis with XSLT, a programmer does not usually care
about the design goals that directed the job of the language creators. This
information now is useful in tracing a boundary between XQuery and XSLT.

We will mention fragments of the W3C specifications for both languages to
help us figure what an XSLT user can expect from the new language.

XSLT Design Goal
XSLT is a transformation language designed to work as a component of XSL – the
"Extensible Stylesheet Language". This language's original goal was to provide a
transformation tool able to convert a given XML document to a new document
with suitable formatting information. The W3C XSLT Recommendation
(http://www.w3.org/TR/xslt) helps describes XSLT with this note:

"XSLT may be used independently of XSL. However, XSLT is not intended as a completely
general-purpose XML transformation language. Rather it is designed primarily for the kinds of

transformations that are needed when XSLT is used as part of XSL."

XSL architects divided the language in two parts: XSL-FO defines formatting
semantics, and XSLT transforms XML data and generates adequate input to an XSL
formatting processor. XSLT's design goal is to specifically meet requirements that
express how XML-based structured content should be presented.

Figure 1

It is reasonable to say that an XSLT processor
provides tools to transform a single XML
document into a new formatted document. This
can be useful for presentation, filtering, and
several other purposes.

XQuery Design Goals
XQuery designers proposed quite different goals
when specifying the requirements of the

language. The XQuery 1.0 Working Draft states:

139

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

"[XQuery] is designed to be a small, easily implementable language in which queries are
concise and easily understood. It is also flexible enough to query a broad spectrum of XML

information sources, including both databases and documents."

XQuery was not meant to specifically handle document transformations. It is
not even bound to operate with single documents; far from this, XQuery is
required to be as flexible as possible when handling heterogeneous data
sources. The W3C XML Query Requirements document
(http://www.w3.org/TR/xmlquery-req) lists several uses; some of them are part
of XSLT, and several are not adequate for an XSLT engine:

� Perform queries on human-readable documents

� Process mixed-model documents (with structured and human-
readable contents)

� Process data-oriented documents (structured, machine-readable
content)

� Be embedded in multiple programming environments

� Operate directly on DOM structures

� Process administrative data (log files, etc.)

� Perform catalogue searches

� Do stream filtering (like UNIX command-line tools)

� Be a front-end to native XML databases and web servers

Every time we talk about document translation, we see that XQuery can do
tasks that XSLT is supposed to handle well. In addition, all tasks related to
large, stream-like, or distributed data are new and uncovered ground. These
are the main reasons the W3C proposed a new query language.

There are comments on the W3C XQuery mailing list presenting some key
differences between XQuery and XSLT. We can enumerate ease-of-use (simple
queries look simpler in XQuery than in XSLT), similarity with conventional
database commands (there are several samples of this in previous chapters),
optimizing abilities (XQuery resembles other database-related technologies
providing an algebra in the formal semantic language definition), and strong
typing (the final language recommendation will provide type enforcement rules
similar to those favored in production environments).

Comparing XQuery to XSLT
The XQuery requirements document states that the language must be able to
handle document transformations and composition; this is almost a rewriting
of the XSLT role definition. However, we can acquire a little more information
on the common features of both languages.

140

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

Common Ground
What can XSLT do for us? The language is supposed to:

� Be able to process XML mark-up with bare data and generate a
presentation-ready document

� Apply transformations according to pattern matches

� Use XPath to identify portions of the source document tree

� Walk a source document tree both programmatically and using
template rules (predicate logic)

XQuery transformation capabilities suppose the language should:

� Be able to query multiple XML data sources to compose a result in the
XQuery/XPath data model

� Apply transformations according to pattern-matches

� Use XPath to identify portions of the source document tree

� Walk several source document trees using template matching

The common ground is how both languages match source data and trigger
transformations and element constructors. XPath was picked as the preferred
matching tool, allowing both languages to easily transverse source XML trees.

A Look at the Differences
The large difference between the two languages can easily be stated as:

XQuery has better mechanisms to work with structured and distributed XML data.

This is the single biggest factor in favor of XQuery over XSLT for a
transformation task. XSLT provides more refined transformation mechanisms,
while XQuery allows very simple expressions to query structured data. Do your
needs include the processing of one document at a time? Both languages can
handle this. However, if you want to query several unrelated documents to
compose a single answer, or to process a continuous data stream with a filter,
XQuery is the easiest choice. Of course, there are other XML query languages,
but XQuery is the only one actually backed by a W3C Working Draft.

We can examine more details on how the two languages differ. A few things
you can do with XSLT that XQuery will not easily provide are:

�
�

XQuery has better
mechanisms to work
with structured and
distributed XML data.

141

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

� XSLT template rules let you describe easily what changes in a
document (XQuery expressions should specify everything that goes in
the output – it can copy a whole element tree but you need to declare
it using recursive functions; elegant for simple tasks but it may
become cumbersome for complex transformations)

� Create variables visible by the whole stylesheet (XQuery variables are
bound to an expression result and can be referenced only in
subsequent clauses of the same expression)

� Generate HTML output (XQuery only generate results on the
XQuery/XPath data model – sequences of documents or fragments of
well-formed XML)

� Recursively apply several templates in a source document, letting the
engine decide which template takes precedence to handle the
transformation (to do recursive evaluation with XQuery you need to do
it explicitly, defining a recursive function and calling it from your query)

All of the above makes XQuery a lot more suited to handle data with strict
and repeated formatting, in contrast with XSLT's ability to easily describe
minor updates in a document. Let us now enumerate what XQuery can
provide with its transformation capabilities that you would not be able to
reproduce with XSLT:

� Apply path expressions on more than one source tree (different
documents) and easily compare or apply set operations on the results
(XSLT deals with more than one document at a time (each has to be
specified by name) but makes it difficult to deal with all of them at once)

� Define functions to be used in path expressions (XSLT offers callable
templates but nothing that can be used within an XPath expression)

� Match text across element boundaries (XSLT only provides tools to
compare contents of single elements and attributes)

� Perform set operations on the result of path operations (XSLT applies
templates on each element that matches a pattern, but it does not
filter a node sequence by comparing it to other sequences)

� Express subsets of items of a path (XSLT 1.1 uses XPath 1.0, which
lets you refer only to sibling items in a path)

The transformation features in XQuery are best employed in sentences to
extract fragments of a document; the language does not make it easy to
transform a whole document, to add markup, or perform global restructure.

142

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

The W3C XQuery Use Cases document (http://www.w3.org/TR/xmlquery-use-
cases) provides several samples involving document transformations, but all of
them return fragments of the original documents, never the full data structure.
The usual context where XQuery is effective is when you wish to analyze the
logical representation of a data-source and present a summary of it.

Where You Should Expect to See XQuery
A developer may use XQuery processing engine to handle transformation
tasks, but it frequently will be simpler to handle these by using XQuery only
to retrieve data and to make suitable arrangements of documents as adequate
input to an XSLT engine.

If you want to combine two documents, it can be done with a little pre-
processing. A filter may read both documents and compose a single one
placing the root element of each document as children of a new parent root
element. (We will present a sample of this later on this chapter.) However,
what if you have two huge documents and need only small fragments of
them? You would get the best of both worlds by using XQuery to extract
relevant data from the huge documents and generate a small "query answer",
and then applying an XSLT stylesheet to present it properly. If you prefer, you
can use XQuery to transform documents in this way in place of XSLT.

We will learn XQuery tools to build output and see how easy it is to create a
well-formed XML document as a query answer. Then we will learn what
XQuery can do for us in matters not related to formatting at all.

XPath Expressions: XQuery Flavor
One of XQuery's requirements was the use of XPath syntax to identify source
data. This is a consistent approach, which coincides with the XSL working
group objective to provide a tool to navigate the hierarchical structure of an
XML document, and for it to be used for matching (testing whether or not a
node matches a pattern).

XPath 1.0 was designed to handle XSLT and XPointer requirements. XQuery
however added some new requisites, so the premises for a new XPath
specification (2.0) were defined. While there is not a final version of XPath
2.0, XQuery designers specified an XPath extension described in the XQuery
Working Draft. The final XPath 2.0 Recommendation should be backwards-
compatible with XPath 1.0, but will add features to fit requirements for
XQuery 1.0 and for XSLT 2.0. The XQuery 1.0 Recommendation mentions,
"XQuery is expected to be a superset of XPath 2.0". XSLT 2.0 will share this
specification as its expression language.

��
XQuery is expected
to be a superset
of XPath 2.0.

143

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

The Data Model
The biggest change in XPath 2.0 is the data model it works on. The language
is still built around the same path axes and the same step/predicate structure,
but the data-source, and the results of a path expression, now belong to a
larger domain. The new data model offers the following improvements:

� Support for all XML Schema data types. The XPath used in XQuery
supports both the data structures and simple data types proposed by
the XML Schema working group.

� The path expression may operate on and return both "collections of
documents", and values of schema data types. XPath 1.0 was restricted
to a node-set, a number, a Boolean, or a string.

Node-Sequences, Not Node-Sets
The new data model dropped the node-set concept. The data model defines
the scope where a path expression operates as "a document, a fragment of
well-formed XML, a primitive value or a list whose elements can be any of the
former". This defines the concept of node-sequence, a list of node-
hierarchies where each element is well-formed XML (not necessarily a full
document; may be a sequence of simple data types, documents, and
document fragments).

The node-sequence enforces an order for its items, and the XQuery processor
will be able to generate a response that keeps this order. The order for a
sequence may or may not follow the original document order. Several
XQuery constructs let you control the ordering in a sequence.

Node-sequences made the old node-set concept obsolete – the newer
construct is more general and also handles the XPath 1.0 use cases.
Sequences may also contain duplicate items, unlike the node-sets where an
item always may appear only once. XQuery also does not use node-sets
because they do not provide mechanisms to represent ordered query results.

XPath is a Key Feature of XQuery
XQuery is a functional language where every sentence is an expression and
every expression returns values belonging to the language data model. This
arrangement was devised to make it easy to formulate complex queries where
each operates on the result of sub-expressions. Any XQuery query is an
expression and an XPath expression is a valid XQuery expression. So the
simplest case of XQuery is a single path expression, totally valid as input to
the query engine. The following is a perfectly valid query:

/foo/bar

144

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

This will return all of the bar children of the foo root element as the query
result. Let us examine some sample path expressions formulated in the extended
XQuery syntax. We will formulate the queries on the following sample document,
census.xml, extracted from the XQuery Use Cases document.

The census data describes two families that have several intermarriages.

<?xml version="1.0"?>

<!DOCTYPE census [

 <!ELEMENT census (person*)>

 <!ELEMENT person (person*)>

 <!ATTLIST person

 name ID #REQUIRED

 spouse IDREF #IMPLIED

 job CDATA #IMPLIED >

]>

<!-- census.xml -->

<census>

 <person name="Bill" job="Teacher">

 <person name="Joe" job="Painter" spouse="Martha">

 <person name="Sam" job="Nurse">

 <person name="Fred" job="Senator" spouse="Jane">

 </person>

 </person>

 <person name="Karen" job="Doctor" spouse="Steve">

 </person>

 </person>

 <person name="Mary" job="Pilot">

 <person name="Susan" job="Pilot" spouse="Dave">

 </person>

 </person>

 </person>

 <person name="Frank" job="Writer">

 <person name="Martha" job="Programmer" spouse="Joe">

 <person name="Dave" job="Athlete" spouse="Susan">

 </person>

 </person>

 <person name="John" job="Artist">

 <person name="Helen" job="Athlete">

 </person>

 <person name="Steve" job="Accountant" spouse="Karen">

 <person name="Jane" job="Doctor" spouse="Fred">

 </person>

 </person>

 </person>

 </person>

</census>

145

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

A simple query to find the job of a person called "Jane" written in XSLT
would be:

<?xml version="1.0"?>

<!-- JaneQuery.xsl -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

 <xsl:template match="//person[@name='Jane']">

 <xsl:value-of select="@job"/>

 </xsl:template>

</xsl:stylesheet>

Note: for readers who are not familiar with how to apply the samples shown,
here is a suggestion. Java users may download the Apache Xalan XSLT
processor, unpack its files and use its command line format as in

> java org.apache.xalan.xslt.Process -IN census.xml -XSL JaneQuery.xsl

 -OUT janejob.xml

Microsoft Internet Explorer users may rely on its internal XSLT engine by
placing a special processing instruction inside the source XML tree and opening
the file in the browser window. The processing instruction looks like:

<?xml-stylesheet type="text/xsl" href="janejob.xsl"?>

Now look below at how this one-line query may be written in XQuery:

document("census.xml")//person[@name="Jane"]/@job

When testing this, we found that QuiP did not like the DOCTYPE declaration at the
start of census.xml. Just remove this declaration if you have the same problems.

In this sample, XQuery uses XPath just like XSLT does. In fact there is nothing
special about path expressions in XQuery. The big change from XSLT to XQuery
is that XQuery avoids verbosity, making sentences simpler. As mentioned before,
even an isolated XPath expression is a valid XQuery expression.

The XQuery version of XPath delivers the same information with less coding.
We can extract all the doctors and senators from the data source with the
samples below (first the XSLT version, then the XQuery one):

<?xml version="1.0"?>

<!-- DoctorsAndSenators.xsl -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

 <xsl:template match="//person[@job='Doctor']">

 <xsl:copy-of select="."/>

 </xsl:template>

 <xsl:template match="//person[@job='Senator']">

 <xsl:copy-of select="."/>

146

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

 </xsl:template>

</xsl:stylesheet>

document("census.xml")//person[(@job="Doctor") or (@job="Senator")]

Both queries above will deliver the information shown overleaf as result:

<person name="Karen" job="Doctor" spouse="Steve" />

<person name="Fred" job="Senator" spouse="Jane" />

<person name="Jane" job="Doctor" spouse="Fred" />

The returned elements from XQuery come by default in the XPath defined
document order, the sequence in which the element starting tags appear in
the document serialized XML markup.

So performing queries with XQuery path expressions is much more concise than
doing it with an XSLT stylesheet. There is no template handling, or XML stylesheet
structure to worry about, just an expression rendering its answer directly. XQuery
always returns the complete content of all items in the expression result; the items
can be XML fragments or simple W3C Schema data types.

Positional Selection in Ranges
Instead of pointing to a simple element in a predicate, XPath 2.0 allows us to
specify a list of elements by position, either by a list of literal numbers (as in
1, 3, 4, 7) or by an expression that generates a sequence (as in 2 TO 5).
As in XPath 1.0 the first node in the sequence is considered to have the
ordinal number 1.

document("zoo.xml")//chapter[2 TO 5]//figure

This finds all the figures in chapters 2 through 5 of the document named
zoo.xml.

This is Q2 from "XQuery 1.0: An XML Query Language"

Dereference Operator
XQuery added to XPath the dereference operator (=>). This operator takes a
node of type IDREF and returns the elements referenced by this value. The
operator is always followed by an element test; if the test fails the element is
not returned:

document("zoo.xml")//chapter[title = "Frogs"]//figref/@refid=>fig/caption

This finds captions of figures that are referenced by figref elements in the
chapter of zoo.xml with title "Frogs".

This is Q3 from "XQuery 1.0: An XML Query Language"

147

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

Steps Made of XQuery Expressions
In XQuery any path step can be formed with XQuery expressions, extending
the functionality of the path expression significantly. This addition to the
XPath spec is yet to be corroborated by the joint XPath 2.0 task force of the
XSL and XML Query working groups. The expression should be enclosed in
parentheses,(and), to avoid ambiguity. Here there is a sample union of two
paths using this feature (the resulting node-sequence includes values where
the step matches "figure" or "table"):

document("zoo.xml")//chapter[title = "Monkeys"]//(figure |

table)/caption

This finds all captions of figures and tables in the chapter of zoo.xml with
the title "Monkeys".

Q5 from "XQuery 1.0: An XML Query Language"

Transformations in XQuery
XQuery provides convenient ways to compose new output, allowing any
expression in the language to embed literal XML markup. To do this, just type
well-formed XML data in the query text as you are used to doing inside
xsl:template elements. This feature in XQuery is known as element
constructors and it will handle almost all needs involving output of new
elements, including element trees, CDATA sections, attributes, and so on. The
only thing the specification still does not allow is the insertion of element
references in queries, but this may be addressed before the next draft.

Every XQuery sentence is a valid "expression" in the language. Remember that
an expression always returns valid constructs for the language data model, and
a fragment of literal mark-up of course is a valid expression. Let us demonstrate
the simplest transformation expressed both in XQuery and XSLT.

<?xml version="1.0"?>

<!-- Comment.xsl -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

 <xsl:template match="/">

 <xsl:comment> output a comment and a single empty element

</xsl:comment>

 <sample/>

 </xsl:template>

</xsl:stylesheet>

The equivalent XQuery construct is:

148

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

<!--output a comment and a single empty element -->

<sample />

The above XQuery does not currently work in QuiP, as QuiP does not like XML comments.

The engine output for both is the same, but for a single item XQuery will not
return an XML declaration at the beginning of the output, because the result
of an XQuery expression is not necessarily a single XML document. The data
model allows sequences of XML fragments and also simple data types.

The particular case shown is a well-formed XML fragment and some engine
implementations may offer you tools to serialize it as a proper XML
document. The samples above have no utility as real transformations, but they
show the philosophy adopted by each language to provide transformations.
XSLT is bound to the document structure, and even to emit just some literal
markup you need to specify, "match the root element and then output this
fragment". XSLT is very consistent in the way it handles document processing.

XQuery is meant to be concise. The sample just says, "Do not care about the
data-source contents, just return this literally." XQuery's approach is geared
toward the easy formulation and combination of simple queries, but it also
provides some complex constructs that made it a little bit closer to XSLT.

Combining Path Expression with Element
Constructors
Element constrsuctors by themselves do not transform anything. But when
combined with XQuery path expressions they provide an extremely concise way to
express simple transformations. Using the same sample document, census.xml,
we can formulate a simple transformation to count the person element.

<?xml version="1.0"?>

<!-- countPeople.xsl -->

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">

 <count-persons>

 <xsl:value-of select="count(//person)" />

 </count-persons>

 </xsl:template>

</xsl:stylesheet>

<count-persons>

 {count(document("census.xml")//person)}

</count-persons>

The above query returns the following:

�
�

XQuery will not return
an XML declaration at
the beginning of the
output, because the
result of an XQuery
expression is not
necessarily and XML
document.

149

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

<count-persons>14</count-persons>

XQuery uses a convention similar to what we found in XSLT: a pair of {}
curly braces identify an expression to be evaluated. XSLT allows this syntax to
be used in the value of certain attributes, while XQuery let you use it inside
any literal XML mark-up.

In the above example, we see another big difference between XSLT and
XQuery transformations: there is no such thing as a default template in XQuery.
The only output you get is what you explicitly specified. XQuery provides no
automatic mechanism to apply transformations, like XSLT's generic
<xsl:apply-templates /> command.

More Element Construction with FLWR
Expressions
The simple element constructing technique shown above is only suitable for
very simple XQuery transformations because the sentence formulated will not
iterate over a collection of nodes, but it does show how easy is to display
aggregate data with XQuery.

As seen in the previous chapter, XQuery provides a simple but yet powerful
language construct to handle collection transversal, the FLWR (FOR-LET-
WHERE-RETURN) expressions. FLWR expressions provide a construction
mechanism very similar to what is provided in XSLT by the xsl:template
and the xsl:for-each commands.

The general form for FLWR expressions is:

FOR variable IN expression

LET variable := expression

WHERE expression

RETURN expression

A FLWR expression may have several independent FOR and LET clauses. Each
one defines a variable to be tested in the optional WHERE clause and to be
used to compose output in the RETURN clause.

The FOR clause behaves very much like xsl:for-each. In XSLT this
command accepts an XPath expression and iterates over it, placing each
element as the context node. XQuery does a similar job, evaluating the given
expression and binding each of its items to the declared variable.

FOR $myvar IN document("census.xml")//person/@job

RETURN $myvar

This returns the following:

Teacher

Writer

Painter

Pilot

150

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

Nurse

Doctor

Senator

Pilot

Programmer

Artist

Athlete

Athlete

Accountant

Doctor

The RETURN clause is responsible for result construction. It comprises a single
expression where any of the previously defined variables can be used. Each
time it is called, RETURN will construct a piece of the expression result; here we
see how XQuery adapts well to handle multiple repetitions of small constructs.

Be careful to not take the "result construct" role as "query output". RETURN
constructs the FLWR expression output, and this will be the query output if the
FLWR expression is the topmost expression in the query. XQuery lets you build
a query with nested expressions, and the RESULT clause of inner expressions
will compose the expression output but not necessarily the query results.

The following query demonstrates this. It uses a FLWR expression to find all
the "Doctors" in the census.xml document, and then an outer path extracts
just the first element from the FLWR result:

(FOR $pers IN document("census.xml")//person[@job="Doctor"]/@name

 RETURN

 $pers)[1]

This returns:

Karen

The LET clause is more like the xsl:variable directive. It will store any valid
data in the XQuery data model – it can be a sequence of simple data types or
nodes, created with a path expression. The bound variable will then be subject
to tests in the WHERE clause and result composition in the RETURN clause,
exactly like the variables defined in the FOR clause. The previous query could
be rewritten with LET to deliver the same result.

LET $perslist := document("census.xml")//person[@job="Doctor"]/@name

RETURN

 $perslist[1]

Note that now the path expression to extract the first element may be the
inner expression, because in the RESULT clause the $perslist variable
assumes the value of the sequence of name attributes, not the individual
value for each one.

151

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

The WHERE clause is a supercharged template matching mechanism. It works
as the RETURN clause: it is called for each combination of distinct values of
the bound variables created with FOR/LET to define a match and provides
transformation tools comparable to the XSLT xsl:if, xsl:choose,
xsl:when, and xsl:otherwise commands. The sample below shows how
to list the name for all the doctors with a FLWR expression.

FOR $myvar IN document("census.xml")//person

WHERE $myvar/@job = "Doctor"

RETURN $myvar/@name

This result is:

Karen Jane

Another powerful feature of the XQuery WHERE clause is its ability to handle
results from path expressions applied in several different data sources at once.
It is really simple; just prepare suitable bound variables in the former FOR and
LET clauses. This lets you join segregated data based on their content – a
concept very common for database developers.

Let us formulate a transformation to show the power of more complex FLWR
expressions. We will output a flat list of all person elements whose
profession is "Athlete", deprived of their content if any. First we examine a
XSLT stylesheet for comparison purposes, and then the same transform will
be shown as an XQuery FLWR expression.

<?xml version="1.0"?>

<!-- findAthlete.xsl -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

 <xsl:template match="/">

 <persons>

 <xsl:for-each select="//person[@job='Athlete']">

 <person>

 <xsl:copy-of select="@*"/>

 </person>

 </xsl:for-each>

 </persons>

 </xsl:template>

</xsl:stylesheet>

The equivalent XQuery is:

<persons>

 {

 FOR $p IN document("census.xml")//person

 WHERE $p/@job='Athlete'

 RETURN

 <person>

 {$p/@*}

152

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

 </person>

 }

</persons>

Both should return the following XML:

<persons>

 <person name="Dave" job="Athlete" spouse="Susan" />

 <person name="Helen" job="Athlete" />

</persons>

XQuery FLWR expressions are very convenient for handling database
applications, which usually require extraction or summarizing from data
sources. The FLWR expression format makes it easy to express the handling of
long repetitions of similar elements.

The example above flattens a hierarchical structure but it is very similar to an
expression to iterate over a list-like collection. Most XQuery expressions deal
with the kind of construct where you iterate over a list and produce some
construction with it. Note that XQuery is very concise and clear once you know
the meaning of each construct.

More on Expression Chaining
A single XQuery FLWR expression is already a very powerful mechanism for
transformations. We can boost its power by chaining expressions. This is
XQuery's way to deliver greater result composability in queries. The base
concept is that expressions take other expressions as parameters – the query
result is built upon successive transforms, where an expression result is passed
to another expression, which uses it to compose another result, and so on.

XQuery enforces that any expression in the language should return results in
the language data model, and each clause in a FLWR expression may accept a
nested FLWR expression. The W3C XQuery Use Cases shows a good example
of expression chaining to handle complex transformations. The following
examples work on the bib.Xml document, first shown in Chapter 4 and
repeated below:

<!-- bib.xml -->

<bib>

 <book year="1994">

 <title>TCP/IP Illustrated</title>

 <author><last>Stevens</last><first>W.</first></author>

 <publisher>Addison-Wesley</publisher>

 <price> 65.95</price>

 </book>

 <book year="1992">

 <title>Advanced Programming in the Unix environment</title>

 <author><last>Stevens</last><first>W.</first></author>

 <publisher>Addison-Wesley</publisher>

�
�

XQuery is very concise
and clear once you
know the meaning
of each construct.

153

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

 <price>65.95</price>

 </book>

 <book year="2000">

 <title>Data on the Web</title>

 <author><last>Abiteboul</last><first>Serge</first></author>

 <author><last>Buneman</last><first>Peter</first></author>

 <author><last>Suciu</last><first>Dan</first></author>

 <publisher>Morgan Kaufmann Publishers</publisher>

 <price> 39.95</price>

 </book>

 <book year="1999">

 <title>The Economics of Technology and Content for Digital

TV</title>

 <editor>

 <last>Gerbarg</last><first>Darcy</first>

 <affiliation>CITI</affiliation>

 </editor>

 <publisher>Kluwer Academic Publishers</publisher>

 <price>129.95</price>

 </book>

</bib>

The following sample transformation inverts the document structure, listing
each author and the list of book titles he published. First we show the
XQuery, then the corresponding XSLT version.

<results>

 {

 FOR $a IN distinct(document("bib.xml")//author)

 RETURN

 <result>

 {$a }

 {

 FOR $b IN document("bib.xml")//book[author = $a]

 RETURN $b/title

 }

 </result>

 }

</results>

<?xml version="1.0"?>

<!-- listByAuthor.xsl -->

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">

 <results>

 <xsl:for-each select="//author[not(.=preceding::author)]">

154

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

 </results>

 </xsl:template>

<xsl:template match="//author">

 <result>

<xsl:copy of select="."/>

<xsl:for each select=".">

</xsl:for each>

</result>

The example query above uses the distinct() function from XQuery's core
library. It operates on a node-sequence and ensures no individual node value
will be repeated in the result.

The program fragment calling the distinct() function was copied from the
XQuery Use Cases document. This function should have been defined in
complementary XQuery documentation, and it was redefined on August 27 in
the XQuery 1.0 and XPath 2.0 Functions and Operators Version 1.0 W3C
Working Draft.

The function is now called value-distinct() to differentiate it from the
identity-distinct() operator, who ensures no node will be repeated but
based on node-identity and not node value. Check the results:

<results>

 <result>

 <author>

 <last>Stevens</last>

 <first>W.</first>

 </author>

 <title>TCP/IP Illustrated</title>

 <title>Advanced Programming in the Unix environment</title>

 </result>

 <result>

 <author>

 <last>Abiteboul</last>s

 <first>Serge</first>

 </author>

 <title>Data on the Web</title>

 </result>

 <result>

 <author>

 <last>Buneman</last>

 <first>Peter</first>

 </author>

 <title>Data on the Web</title>

 </result>

 <result>

 <author>

155

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

 <last>Suciu</last>

 <first>Dan</first>

 </author>

 <title>Data on the Web</title>

 </result>

</results>

Expressions in the WHERE and RETURN clauses of a FLWR expression will
inherit all the variables defined in the FOR and LET clauses of the top
expression – the variables in scope. In the previous example, the inner FLWR
does a path predicate test using a variable from the outer expression.

This is similar to xsl:call-template in the way the outer expression prepares
bound variables with values and makes them in visible in the scope of the inner
expression. This behavior also applies to the list of FOR and LET clauses in a
single expression: each variable declared will be visible in the expressions for the
subsequent clauses.

Looking at some of the previous examples, we may think XQuery is just a
very different approach to solve the same transformation problems. This is
only partially true, because here we are comparing both languages' constructs
to explain XQuery features. XSLT 1.0 offers 36 different elements for
stylesheet composition, while XQuery has only XPath expressions, element
constructors, FLWR expressions, and some special conditional mechanisms.
Certainly there are transformations that easily done with XSLT and
nightmarish to do with XQuery.

The previous XQuery sample shows an unusual situation for XSLT, an
expression calling another and later generating results. The XSLT output
mechanisms operate immediately and directly in the resulting document.
XQuery expressions will not generate any output by themselves. In XQuery, the
query engine output is defined by the results of the topmost expression. Any
inner expression, as complex as it is, will only deliver results to its caller; it is
up to the caller expression to reproduce these values to the output or to just
use them for further computations. XQuery expressions will not generate any
output by themselves until the topmost expression returns its result.

Comparing Transformation Capabilities
In all of the former use cases, XQuery features were introduced and compared
to XSLT commands. Later, we looked at a few code samples. Most XQuery
sentences were very clear and concise, appearing to be more directly to the
point. This perspective may tempt us to wrongly judge each language's ability
to handle document transformations.

In reality XQuery is not a very good candidate to substitute XSLT as a
document transformation tool. From the previous examples, the reader can
infer a significant XQuery feature: it is easy to describe a transformation when
you mention every tree fragment that composes the result tree. XSLT behavior
on this issue is much more coherent for the transformation role, because
template rules allow you to easily describe only the changes in the document.

156

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

You can preserve data to be left untouched in an XQuery transform, but you
need to add code telling the query engine to do this task. XSLT by default
modifies only specific portions of a document and leaves the rest of it
unchanged. XQuery can do it, with recursive functions, but XQuery does not
make it the easiest task.

Now we will see a use case where XQuery does compare well with XSLT. We
will make a subtle change in the bib.xml sample document, switching the
price elements with price attributes on the book element.

Here we have a possible XSLT solution for this task:

<?xml version="1.0"?>

<!-- priceSwitch.xsl -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

 <xsl:template match="//book">

 <book>

 <xsl:attribute name="price">

 <xsl:value-of select="price" />

 </xsl:attribute>

 <xsl:copy-of select="@*" />

 <xsl:for-each select="*[name()!='price']">

 <xsl:copy-of select="."/>

 </xsl:for-each>

 </book>

 </xsl:template>

</xsl:stylesheet>

Note that the stylesheet describes only the transformation, not mentioning
unrelated elements in the document. Now we will formulate an XQuery able
to do the same transformation on the sample document:

<bib>

{

 FOR $b IN document("bib.xml")/bib/book

 LET $p := $b/price

 RETURN

 <book price={$p}>

 {$b/@year}

 {

 FOR $child IN $b/*

 WHERE name($child) != "price"

 RETURN $child

 }

 </book>

}

</bib>

157

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

This results in:

<bib>

 <book year="1994" price="65.95">

 <title>TCP/IP Illustrated</title>

 <author>

 <last>Stevens</last>

 <first>W.</first>

 </author>

 <publisher>Addison-Wesley</publisher>

 </book>

 <book year="1992" price="65.95">

 <title>Advanced Programming in the Unix environment</title>

 <author>

 <last>Stevens</last>

 <first>W.</first>

 </author>

 <publisher>Addison-Wesley</publisher>

 </book>

 <book year="2000" price="39.95">

 <title>Data on the Web</title>

 <author>

 <last>Abiteboul</last>

 <first>Serge</first>

 </author>

 <author>

 <last>Buneman</last>

 <first>Peter</first>

 </author>

 <author>

 <last>Suciu</last>

 <first>Dan</first>

 </author>

 <publisher>Morgan Kaufmann Publishers</publisher>

 </book>

 <book year="1999" price="129.95">

 <title>

 The Economics of Technology and Content for Digital TV

 </title>

 <editor>

 <last>Gerbarg</last>

 <first>Darcy</first>

 <affiliation>CITI</affiliation>

 </editor>

 <publisher>Kluwer Academic Publishers</publisher>

 </book>

</bib>

158

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

The XQuery expression is not too complex, but this sample handles the
transformation in a cumbersome way. The RETURN clause composes a new
content for the book element reading the sequence of child nodes. To filter it,
we compare each child element's name with price (name of the element to
be purged). The problem with this query is that it will generate output
comprising only the root element bib, its book child elements, and each
book's child.

Another document dependency we find in this sample is the linear structure of
the response. This FLWR expression will return a flat list of books, and its XSLT
cousin is able to transform any tree whose book elements have a single price
child element. To do the same with XQuery we should write a recursive
function thus becoming able to keep the tree structure in the query result.

XQuery Imitates XSLT
In this part, we will present XQuery constructs that closely resemble their
XSLT counterparts. The XQuery 1.0 Working Draft mentions several
technologies that inspired the language design, but XSLT is not cited. This is
probably because XSLT did not create the features shown below, but instead
borrowed them from other languages.

Sorting Data
XQuery provides a sorting operator that can be applied to the result of any
expression. The SORTBY clause follows the following general form:

expression SORTBY (expression direction, expression direction, ...)

The data to be sorted is the result of the expression on the left of the SORTBY
clause. The list of expressions between the parentheses is the sort condition
evaluations. Each individual value from the data to be sorted will be
evaluated by these expression, and the individual results should support the >
operator to enable the sorting engine to handle the task.

The engine uses the resulting values to compute a new, sorted, sequence for
the list. To build the resulting list, the value for direction can be optionally
declared, and can be ASCENDING (the default value) or DESCENDING.

Unlike XSLT's xsl:sort instruction, which only operates inside xsl:
apply-templates and xsl:for-each elements, XQuery's SORTBY can be applied
to any expression result, including of course FLWR expressions. To demonstrate,
below is a sample query that produces a sorted list of person elements from the
census.xml document:

<persons>

{

 FOR $p IN document("census.xml")//person

 RETURN

 <person>

159

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

 {$p/@*}

 </person>

 SORTBY (@name)

}

</persons>

The value @name in the sort expression list tells the engine to evaluate it as a
relative XPath expression on each node generated by the FLWR expression to
generate the output shown below:

<persons>

 <person name="Bill" job="Teacher">

 <person name="Dave" job="Athlete" spouse="Susan"/>

 <person name="Fred" job="Senator" spouse="Jane"/>

 <person name="Helen" job="Athlete"/>

 <person name="Jane" job="Doctor" spouse="Fred"/>

 <person name="Joe" job="Painter" spouse="Martha"/>

 <person name="Karen" job="Doctor" spouse="Steve"/>

 <person name="Martha" job="Programmer" spouse="Joe"/>

 <person name="Mary" job="Pilot"/>

 <person name="John" job="Artist"/>

 <person name="Sam" job="Nurse"/>

 <person name="Steve" job="Accountant" spouse="Karen"/>

 <person name="Susan" job="Pilot" spouse="Dave"/>

</persons>

The fragment of XSLT to do the same is very similar:

<?xml version="1.0"?>

<!-- sortCensus.xsl -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

 <xsl:template match="/">

 <persons>

 <xsl:for-each select="//person">

 <xsl:sort select="@name" />

 <person>

 <xsl:copy-of select="@*"/>

 </person>

 </xsl:for-each>

 </persons>

 </xsl:template>

</xsl:stylesheet>

160

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

Defining Functions
This mechanism provided by XQuery to extend the language at first looks a
lot like the XSLT xsl:call-template instruction. However, XQuery
designers had goals that were more ambitious for XQuery functions. The
requisite for XQuery functions includes:

� Define a function with a formal parameter list and a specific return
data type (this basic capability supersedes that of xsl:call-
template, because XSLT's callable templates can only set variables or
generate output. Also, XQuery function parameters are strongly typed,
whereas xsl:template parameters are not.

� Provide a set of rules to automatically convert instances of the XML
Schema simple data types.

� Permit the definition of recursive and mutually recursive functions (a
pair of functions where one calls the other and vice-versa).

� Optionally omit type declaration for parameters or return value, adopting
standard types: parameters assume the type "any node" and return values
the value node-sequence.

� Automatically apply a function designed to receive an item over a list
of items of the same data type, and apply a function designed to
receive a list to a single individual item (taking it as a one-item list).

A sample query where a function is used to determine the list of a person
child in the sample census.xml document. The core XQuery shallow()
function is used to return a copy of all the child elements for the element with
the name attribute of "Joe" or for the element whose name is the equal to
Joe's spouse attribute. It will return a flat list of elements with their attributes
but without any of its children. The examples below show this, first with
XSLT and than in XQuery.

<?xml version="1.0"?>

<!-- functionEquiv.xsl -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

 <xsl:template match="/">

 <joechildren>

 <xsl:for-each select="//person[@name='Joe']/person">

 <xsl:call-template name="print-person">

 <xsl:with-param name="myperson" select="."/>

 </xsl:call-template>

 </xsl:for-each>

 <xsl:for-each

 select="//person[@name=(//person[@name='Joe']/@spouse)]/person">

 <xsl:call-template name="print-person">

161

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

 <xsl:with-param name="myperson" select="."/>

 </xsl:call-template>

 </xsl:for-each>

 </joechildren>

 </xsl:template>

 <xsl:template name="print-person">

 <xsl:param name="myperson"/>

 <person>

 <xsl:copy-of select="$myperson/@*"/>

 </person>

 </xsl:template>

</xsl:stylesheet>

DEFINE FUNCTION children (ELEMENT $p) RETURNS ELEMENT

{

 shallow($p/person) UNION shallow($p/@spouse=>person/person)

}

<result>

{

 FOR $j IN document("census.xml")//person[@name = "Joe"]

 RETURN children($j)

}

</result>

 This did not work under QuiP at time of editorial, as QuiP did not support the
shallow() function.

The samples above produce:

<joechildren>

 <person name="Sam" job="Nurse" />

 <person name="Karen" job="Doctor" spouse="Steve" />

 <person name="Dave" job="Athlete" spouse="Susan" />

</joechildren>

Note that the callable template does not set a return value, but directly adds
content to the result tree. Some XSLT programmers use variables to simulate
some of XQuery function behavior, but the resulting code is nowhere as
simple or reusable as XQuery's DEFINE FUNCTION construct.

Recursive Functions
Recursive evaluation is the core of XSLT technology. All the xsl:template
clauses are searched and in a match are recursively evaluated for each xsl:
apply-templates command in the stylesheet.

162

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

A recursive function call is a convenient way to traverse a tree. It generates
output while keeping the document hierarchy intact. XQuery functions allow us
to mimic this XSLT feature and free ourselves from the flat return list model
proposed by FLWR expressions.

To demonstrate this useful construct we will start from the census.xml
document and make a new document with the same hierarchy but replacing
the job and spouse attributes with equivalent child elements. Each node
should be converted from:

<person name="Dave" job="Athlete" spouse="Susan" />

to the following form:

<person name="Dave">

 <job>Athlete</job>

 <spouse>Susan</spouse>

</person>

Let us first review the XSLT solution for this. As already stated, it is very
concise due to the language's inherent ability to recursively evaluate
transformations.

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

 <xsl:template match="/census/person">

 <census>

 <xsl:apply-templates select="person" />

 </census>

 </xsl:template>

 <xsl:template match="person">

 <xsl:copy>

 <xsl:apply-templates select="@name" />

 <job> <xsl:value-of select="@job" /> </job>

 <xsl:if test="count(@spouse) > 0">

 <spouse> <xsl:value-of select="@spouse"/> </spouse>

 </xsl:if>

 <xsl:apply-templates select="person" />

 </xsl:copy>

 </xsl:template>

 <xsl:template match="//person/@name">

 <xsl:copy-of select="."/>

 </xsl:template>

</xsl:stylesheet>

The recursive call is shown in gray. It is handled automatically by the XSLT
engine because the "person" template expression matches the given xsl:
apply-templates call. This renders the following output:

163

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

<census>

 <person name="Joe">

 <job>Painter</job>

 <spouse>Martha</spouse>

 <person name="Sam">

 <job>Nurse</job>

 <person name="Fred">

 <job>Senator</job>

 <spouse>Jane</spouse>

 </person>

 </person>

 ...

 </person>

 ...

</census>

Now we will write the same using an XQuery function:

DEFINE FUNCTION rewrite_person (ELEMENT $p) RETURNS ELEMENT
{

 <person>

 {$p/@name}

 <job>

 {$p/@job/text()}

 </job>

 {

 IF (count($p/@spouse) > 0)

 THEN <spouse>{$p/@spouse/text()}</spouse>

 ELSE ()

 }

 {

 FOR $child IN $p/person

 RETURN rewrite_person($child)
 }

 </person>

}

<census>

{

 FOR $aperson IN document("census.xml")/census/person

 RETURN rewrite_person($aperson)
}

</census>

164

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

Unlike XSLT, XQuery's approach to recursion requires the programmer to
previously select values for formal parameters and then explicitly call the
function with each of them. XSLT also allows you to do it with callable
templates, but the engine default behavior is the automatic evaluation of all the
suitable templates found in the stylesheet.

The XQuery expression above also shows us the language's conditional
operator, in the format:

IF expression1 THEN expression2 ELSE expression3

If the first expression evaluates to true the THEN clause is evaluated and its
results returned; otherwise, the expression in the ELSE clause receives the
same treatment.

XQuery Set/Sequence-Oriented
Constructs
XQuery modified the original XPath data model to provide better support
handling portions of a data source. This design was reflected initially in the
range positional predicates – the [x TO y], or [k, l, m] formats. The
language also provides several operators able to combine or modify sequences
of values. An XQuery sequence does not need to include only nodes from the
document tree. Any simple data type can compose a sequence and most of the
language's operators will be able to operate on them as well.

Sequence Operations
The basic sequence operator is the comma ","; it is placed between two
expressions and combines them into an ordered sequence of values.

1, 2

The sample above is a valid XQuery expression that generates a sequence
with two simple data elements.

The TO operation presented in path expressions at the beginning of this chapter
is also a sequence constructor. It is like the "," (comma) operator and converts
both parameters to integers before constructing a sequence of values including
all the values from the left to the right operands. So the expression:

1 TO 4

means exactly the same as:

1, 2, 3, 4

165

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

The sequential character of XQuery data may be used in the language's
conditional expressions through the BEFORE and AFTER clauses. BEFORE is
an infix operator that takes two sequences as parameters and returns nodes
from the first sequence that are at least before one node of the second
sequence. This is possible only if the two sequences are subsets of the same
larger sequence. AFTER works in a similar way, taking elements from the first
sequence that follow elements from the second.

document("bib.xml")//book BEFORE

 document("bib.xml")//book[2]

is equivalent to:

document("bib.xml")//book[1]

and will return the following one element sequence:

<book year="1994">

 <title>TCP/IP Illustrated</title>

 <author>

 <last>Stevens</last>

 <first>W.</first>

 </author>

 <publisher>Addison-Wesley</publisher>

 <price>65.95</price>

</book>

This can be very useful when used in path expressions. We can demonstrate it
by extracting all books written after 1999 from the sample bib.xml document.

<results>

{

 LET $booklist := distinct(document("bib.xml")//book) SORTBY (@year)

 RETURN

 $booklist AFTER ($booklist/book[@year = "1999"])

}

</results>

<results>

 <book year="2000">

 <title>Data on the Web</title>

 <author><last>Abiteboul</last><first>Serge</first></author>

 <author><last>Buneman</last><first>Peter</first></author>

 <author><last>Suciu</last><first>Dan</first></author>

 <publisher>Morgan Kaufmann Publishers</publisher>

 <price>39.95</price>

 </book>

</results>

166

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

In the previous example the book list is first sorted and stored in a variable,
so we are able to refer to it twice in the AFTER sequence operation. If the
data were not sorted previously, the expression would return an empty book
list because the last book element in the document has the year attribute
equal to 1999.

This shows clearly the difference between document order and sequence
order. XQuery expressions always work in sequence order. Specifically with
node-sequences this may be the standard XPath document order – if the
sequence did not change due to any sort or sequence operation.

Set Operations
XQuery may also operate on node-sequences disregarding element order, as if
they were element sets. The language provides three set operators for this task:

� UNION (or "|")

� INTERSECT

� EXCEPT

They all take two sequences as arguments and generate a single result
sequence. UNION has an alternate syntax, "|" to resemble XPath 1.0 syntax.
The following expression will return the list of all books written in 1992 or
published by "Addison-Wesley":

document("bib.xml")//book[@year="1992"] UNION

 document("bib.xml")//book[publisher/text()="Addison-Wesley"]

The first expression results in a single book, and the second returns two. The
union of both is:

<book year="1994">

 <title>TCP/IP Illustrated</title>

 <author><last>Stevens</last><first>W.</first></author>

 <publisher>Addison-Wesley</publisher>

 <price> 65.95</price>

</book>

<book year="1992">

 <title>Advanced Programming in the Unix environment</title>

 <author><last>Stevens</last><first>W.</first></author>

 <publisher>Addison-Wesley</publisher>

 <price>65.95</price>

</book>

XQuery returns only two book nodes because the UNION operator will not
repeat a node. This is evaluated with the node identity concept, as is the
identity-distinct() function. This is also the behavior of node-
sequences in the XPath 1.0 Data Model.

167

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

The INTERSECT operator provides the same functionality as set intersection in
mathematics. It will only return nodes present in both sequences, so the expression:

document("bib.xml")//book[@year="1992"] INTERSECT

 document("bib.xml")//book/publisher[text()="Addison-Wesley"]

returns a single book node that appears in both parameters for the
INTERSECT operator.

<book year="1992">

 <title>Advanced Programming in the Unix environment</title>

 <author><last>Stevens</last><first>W.</first></author>

 <publisher>Addison-Wesley</publisher>

 <price>65.95</price>

</book>

EXCEPT performs as the mathematical set difference operator. It also takes two
sequences and returns only elements present in the first but not in the
second sequence.

document("bib.xml")//book/publisher[text()="Addison-Wesley"] EXCEPT

 document("bib.xml")//book[@year="1992"]

This returns the following XML:

<book year="1994">

 <title>TCP/IP Illustrated</title>

 <author><last>Stevens</last><first>W.</first></author>

 <publisher>Addison-Wesley</publisher>

 <price>65.95</price>

</book>

Quantifiers (SOME / EVERY)
XQuery simplifies writing expression predicates iterating over any sequence
to verify if each or some individual items satisfy a condition. The SOME and
EVERY expressions always return a Boolean value (also a valid XQuery
expression) where:

EVERY variable IN expression1 SATISFIES expression2

This is true only if all items in the sequence returned by expression1
evaluate to true when applied to expression2, such as:

EVERY $n IN 1, 2, 3 SATISFIES $n > 0

The SOME construct has the same general form but will evaluate to true if
any of the values satisfies the condition:

SOME $n in 1 TO 3 SATISFIES $n = 2

168

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

Both constructs above are useful to apply logical AND and OR operators
through a whole set of values. Be careful to note:

EVERY will always return true if the expression to be iterated over is empty

XQuery Influence in XSLT 2.0
XSLT 2.0 evolved from previous specifications to accommodate the language
role as a formatting tool, not a query mechanism. The W3C XSLT
Requirements Version 2.0 working draft document states this clearly in its
opening section:

"XSLT 2.0 has the following goals:

� Simplify manipulation of XML Schema-typed content

� Simplify manipulation of string content

� Support related XML standards

� Improve ease of use

� Improve interoperability

� Improve i18n support

� Maintain backward compatibility

� Enable improved processor efficiency

 In addition, the following are explicitly not goals:

� Simplifying the ability to parse unstructured information to produce
structured results

� Turning XSLT into a general-purpose programming language"

The XSLT working group is acting in sync with the XQuery working group to
define clear roles for each language. XSLT will evolve to become a better
transformation tool for presentation purposes, while keeping compatibility
with XSLT 1.0. The proposal also states that XSLT was not meant to be a
general-purpose programming language nor to be specifically suited to
generate structured results.

XQuery gave significant contributions to the ongoing XPath 2.0 specification.
XSLT 2.0 will inherit all this, so both languages will share a common ground
in path expression syntax. However, new XQuery constructs will be geared
toward operating on XML data-sources with the addition of commands to
update XML data and to define persistent views of XML databases.

169

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

The development of XQuery and related XML technologies and the feedback
of the XSLT user community gave XSLT 2.0 designers some hints to improve
the language handling of several tasks:

� Data grouping

� XML Schema data types (mostly handled by the XPath 2.0 core
function library)

� The direct use of IDREF attributes when selecting paths (also a feature
built into XPath 2.0.)

The arrangement of tools provided today points to developers using XSLT
mostly for presentation purposes. Programmers will rely on XQuery to access
database systems and extract data to feed to the XSL formatter.

Summary
This chapter showed us some of the strengths and weakness of XQuery when compared to the current
XSLT recommendation. It also presented key XQuery features to handle XML transformations, like:

� The XPath 2.0 Data Model

� The sequence concept

� Ranges in path expressions

� Transforms with constructors and FLWR expressions

� Expression chaining

� Data sorting

� Defining recursive and non-recursive functions

� Set, sequence, and quantifier operators

In the following chapters we will look at these concepts in use in early XQuery implementations.

170

Fr
om

 X
S
LT

 t
o

X
Q

ue
ry

5

