
The New Request Architecture

In the earliest versions of IIS, web application code ran in-process within the web
server itself, and unloading or replacing an application often meant restarting the entire
web service. It also meant that if an application had problems, it typically took IIS
down with it. Even worse was that errors in a web application could end up corrupting
other web applications. Starting with IIS 4, support for out-of-process applications was
introduced. However, this meant performance degradation as requests were first sent to
the main IIS process, then to the out-of-process application, and finally back to the
main IIS process again. With the release of IIS 6.0, the entire underlying request
processing architecture has been redesigned and vastly improved over previous
versions, improving both reliability as well as performance.

In IIS 6.0, the components that are critical to the proper functioning of web services are
isolated from all web applications. All requests are handled by the kernel-mode HTTP
handler HTTP.sys. All applications that process the requests are handled by the Web
Administration Service (WAS). All web applications now run out-of-process, but
without the performance penalty, as the requests are routed to the appropriate process
directly from HTTP.sys. The HTTP.sys and the WAS, reside in their own separate
process spaces and do not allow third-party code to be loaded into them, preventing a
misbehaving web application from affecting the web services.

IIS 6.0 has the capability to isolate third-party code into separate application pools of
one or more worker processes, to avoid impacting the entire server when an
application malfunctions.

A worker process is simply a user mode application, which processes HTTP requests
such as requests for a static page, invoking an ISAPI filter or extension, running a CGI,
or executing application code. Worker processes are implemented as executables
called w3wp.exe and are controlled by WAS. The HTTP.sys listener routes requests
and responses to and from worker processes.

2

Chapter 2: The New Request Architecture

22

An application pool is a group of web applications that share one or more worker
processes. Application pools allow configuration information to be applied separately
to one or more web applications and the worker processes that serve them. Each
application within an application pool shares one or more worker processes.

With this new architecture, IIS 6.0 automatically detects application crashes, memory
leaks, and other errors. When these conditions occur, IIS 6.0 provides fault tolerance as
well as the ability to restart the worker processes as necessary. IIS 6.0 also takes the
preventive step of recycling worker processes, thereby avoiding memory leaks and
performance degradations before they build up. In these cases, IIS 6.0 continues to
queue requests without interrupting the user experience.

In this chapter, we will examine the features and components of the new request
architecture, and discuss the following topics:

❑ Request flow architecture

❑ Application Isolation Modes

❑ Kernel-mode HTTP listener (HTTP.sys)

❑ Web Administration Service (WAS)

❑ Application Pools

❑ Application Health Monitoring

❑ Web Gardens

Request Flow Architecture

23

Request Flow Architecture
We will now take a look at how a request is processed and what path it follows within
IIS. The path of the request has been illustrated in the following diagram:

Figure 1

Internet

HTTP.sys

2. Is request in
cache?

7
.

R
es

po
ns

e
to

C
lie

nt

Application Pool

IIS 6.0
(Worker Process isolation Mode)

4. WAS determines
if a worker process
is started, and if not,
starts one.

WAS

4. Signal WP

if request invalid,
then error message
to client

1. Is request
valid?

if response cached,
the cached response
sent to client

Q
ueue

Q
ueue

Q
ueue

3. Determine Appropriate Queue and
Queue Request.4. Signal WAS

6
.

S
en

d
R

es
po

ns
e

5. Worker Process

The request flow occurs as follows:

1. When a request arrives, HTTP.sys determines if the request is initially
valid. If it is not, an Invalid Request error code is sent back to the client and
the connection is closed.

2. If the request is valid, HTTP.sys then checks to see if the response can be
found in its kernel mode cache and, if it is present in the cache, HTTP.sys
sends the response.

Chapter 2: The New Request Architecture

24

3. If the response is not in the cache, HTTP.sys then determines the
appropriate application pool to receive the request, and puts the request
into that application pool's request queue. All processing up to this point is
handled in the kernel mode.

4. If there is no worker process running for the queue, HTTP.sys notifies
WAS to start a worker process. WAS is the first user mode application
becoming involved in the process.

5. Worker processes check their queues, and pick up the requests that are
waiting for processing.

6. After processing, the worker process sends the response back to HTTP.sys

7. HTTP.sys sends the response back to the client and, if configured to do so,
logs the request.

We will describe the key components, HTTP.sys and WAS, and their roles in the
request path flow, later in the chapter. However, before that we need to understand
the isolation modes offered by IIS 6.0:

❑ Worker Process Isolation Mode

❑ IIS 5 Isolation Mode

All applications are executed in either one of the two modes.

Application Isolation Modes
While both modes still use HTTP.sys as their listener, they are distinctly different in
their operation. The isolation mode you select will have an impact on both
performance and reliability, and will determine which features are available to you.
Worker Process Isolation Mode is the recommended mode of operation for IIS 6.0, as it
offers increased reliability through better isolation of applications. You should use
worker process isolation mode unless there is a genuine issue of compatibility that will
force you to use IIS 5 isolation mode; such as the need for ISAPI raw read filters, a
feature that is not supported in worker process isolation mode.

Application Isolation Modes

25

IIS 6.0 Worker Processes Isolation Mode
The new IIS 6.0 mode is called Worker Process Isolation Mode, because all applications
are isolated as worker processes and hosted by a Web Application Manager (WAM)
object, instead of dllhost.exe, as in previous versions. In IIS 5.0, you were limited to a
single application pool. In IIS 6.0, you may have many application pools of worker
processes, each worker process being an instance of an application called w3wp.exe. You
might think of each worker process as its own World Wide Web Publishing Service
(W3SVC), able to load and host applications in-process. In essence, anything that was done
in W3SVC (in IIS 5) is now done by the worker processes in IIS 6.0.

How Worker Process Isolation Mode works
IIS 6.0 creates a separate worker process for each application pool, configuring each
application to work in a separate isolated process, and thus ensuring that applications do
not interfere with each other. An ISAPI application that would have crashed in IIS 5,
would have taken down the whole server. In IIS 6.0 worker process isolation mode, such
a crash would be detected and handled, with the rest of the server completely unharmed
by any problem. The WAS doesn't restart worker processes until there's a request for the
web application, thereby preserving resources until a worker process is actually needed.

Chapter 2: The New Request Architecture

26

The following diagram illustrates the working of worker process isolation mode:

Figure 2

Worker Process isolation Mode

Web Administration Service (WAS)
IIS 6.0 web server

user mode

HTTP.sys
Response

Cache

kernel mode

Application Pool

Web
Application

Worker
Process

Web
Application

Application Pool
(Web Garden)

Worker
Process

Web
Application

Worker
Process

Web
Application

Worker
Process

Web
Application

Ad
m

in

Ad
m

in

R
eq

ue
st

s

R
eq

ue
st

s

R
eq

ue
st

s

C
on

fig
ur

at
io

n

HTTP.sys resides in kernel mode. In user mode, WAS manages application pools and
the configuration of both HTTP.sys as well as application pools.

The Benefits of Worker Process Isolation Mode
IIS 6.0 Worker Process Isolation Mode improves upon the previous process models by
providing increased scalability, reliability, and manageability. In this mode, there can
be multiple worker processes available to handle requests, and each worker process is
multi-threaded and capable of handling multiple user requests.

Application Isolation Modes

27

With multiple worker processes, Web Gardens can be created, further increasing
scalability on multi-processor machines. Like a Web Farm, which is comprised of a
number of similar machines working to balance request loads, a Web Garden is a
single machine, balancing request loads across multiple processors. The key difference
in IIS 6.0 is that worker processes can be assigned to individual processors. This way, if
a worker process is blocked for a period of time, on a request that takes time (such as
a database query), other worker processes are available on other processors. Worker
process recycling may be configured to occur on a round-robin basis between
processors, eliminating the short downtime during a recycle.

With all user code removed from the HTTP listener and WAS, IIS 6.0 provides increased
reliability through isolation of potentially harmful code. Additionally, application health
monitoring ensures that malfunctioning or misbehaving code is recycled or shut down
gracefully as appropriate. Grouping similarly configured applications into application
pools allows for better control over configuration, increasing manageability, and allows
for control down to the namespace/application level.

IIS 5.0 Isolation Mode
There are a number of reasons that the new worker process isolation mode may not be
right for you. Your application may not be able to operate when there are multiple
instances running, or may not be able to deal with the possible conditions in which the
session state may be lost. While both of these issues can be addressed with
configuration changes in worker process isolation mode, an insurmountable problem is
that in many cases there are existing applications that make use of ISAPI's read raw
data feature, which does not work in IIS 6.0 worker process isolation mode.

If you do not intend to upgrade to the new way of doing things, you will want to use
IIS 5.0 Isolation Mode, which provides backwards compatibility for applications that
require an environment similar to IIS 5. As in IIS 5, applications run as part of IIS
process (in-process, inside of inetinfo.exe) or in separate process (dllhost.exe),
but there is no isolation between web applications. HTTP.sys processes requests for
this mode in the same way as IIS 6.0 worker process isolation mode.

Chapter 2: The New Request Architecture

28

The following diagram illustrates the working of IIS 5 isolation mode:

Figure 3

IIS 5 Isolation Mode

IIS 6.0 web server
user mode

kernal mode

Innetinfo.exe

Ad
m

in

dllhost.exe

ISAPI
Extension

dllhost.exe

ISAPI
Extension

dllhost.exe

ISAPI
Extension

In-Process
Application

ISAPI Filter

w3svc.dll,
Single Worker

process

In-Memory
Metabase

R
eq

ue
st

s

HTTP.sys
Response

Cache

C
on

fig
ur

at
io

n

Web Administration Service (WAS)

In the previous diagram, note the absence of all but one worker process. In this mode,
HTTP.sys creates only one request queue. This was the drawback of IIS 5 isolation
mode in that it provided only one application pool.

Which Mode?
IIS 6.0 will initialize itself in either worker process isolation mode or IIS 5 isolation
mode, but not both. In other words, it is not possible to run some web applications in
worker process isolation mode and others in IIS 5 isolation mode. New installations of
IIS 6.0 will start in IIS 6.0 worker process isolation mode, while upgrades of any older
versions of IIS (including version 5 and below) will start in IIS 5.0 isolation mode by
default. Upgrades from IIS 6.0 will retain the mode previously used. If in the process of
an upgrade, the mode is switched to worker process isolation mode, all applications
will be placed in the single default application pool. Note that when the applications
are so moved, their isolation configuration will be different from their previous
configuration, and may need to be manually changed. See the section Application
Isolation and Performance later in the chapter.

Application Isolation Modes

29

Switching Between Modes
You can change the application isolation mode, either with the Microsoft Management
Console (MMC) snap-in or the scripting interfaces, and you can change it back and forth at
any time. For example, if you are running an application that uses read raw filters, you can
set the mode to IIS 5 isolation mode while you redesign your application. Once the
redesign is done, you can set it back to worker process isolation mode. The application
isolation mode is controlled through the IIS5IsolationModeEnabled property in the
metabase (the IIS 6.0 configuration data structure). Setting this property to false will enable
worker process isolation mode, and setting it to true will enable IIS 5 isolation mode.
Changing this value requires a restart of the W3SVC service before the change is enacted.

You can change the isolation mode by starting the IIS Manager and accessing the
Properties for web sites. The mode can be set in the property page under the Service tab:

Architectural Considerations of Worker Process
Isolation Mode
There are a number of considerations to keep in mind when designing applications (or
porting and configuring existing applications) for worker process isolation mode. State
management becomes more complicated in an environment where processes may be
recycled, as one process may be shut down in favor of a new one. Processes may be
running multiple times, which adds new challenges for applications that must be
prepared to operate in a multi-instanced environment. Worker process isolation mode
also presents changes to the way that ISAPI filters operate, including the absence of
read raw filters. We'll also take a look at special considerations for ASP.NET, and the
implications of application isolation on performance.

Chapter 2: The New Request Architecture

30

State Management
When a worker process times out due to idle processing and is automatically shut
down, any session state information stored in that process may be lost. Recycling,
which causes the worker process to be restarted, may result in lost state as well.
Applications should persist any state externally (such as in a database, or the ASP.NET
session service). If your session state management code cannot be modified, IIS should
be configured to run in a mode that does not threaten to lose state, including disabling
recycling and idle timeout of worker processes.

Multi-Instancing
Multi-instancing, or two or more instances of a process running simultaneously, can
pose problems for applications not prepared for this occurrence. Applications that use
kernel objects such as mutexes, must be prepared for other instances to be accessing
the same object, both within the same process as well as other processes. Applications
that implement custom logging modules must be prepared for other instances to be
accessing the same log. To avoid multi-instancing issues, you will not only need to
ensure that there is only one worker process per application pool, but you will also
need to disable overlapped recycling, which could result in the existence of two
worker processes during the overlapped portion of an application pool recycle.

ISAPI Filters
In IIS 5.0, ISAPI filters ran in inetinfo.exe as LocalSystem and were guaranteed to be
single-instanced. In worker process isolation mode, this is no longer the case. ISAPI
filters may be multi-instanced, have different process identities, and are subject to
recycling. Perhaps most importantly, the worker process isolation mode does not
support SF_READ_RAW_DATA and SF_SEND_RAW_DATA. If you have a filter that
registers for these notifications, and cannot be modified, you will have to run in IIS 5
isolation mode.

To resolve these issues in IIS 6.0, it is recommended that you use ISAPI extensions
instead of filters. With the addition of wildcard scriptmaps and the
HSE_REQ_EXEC_URL server support function, ISAPI extensions may now be used in
the same role as traditional ISAPI filters. Additionally, ISAPI extensions are
asynchronous (as opposed to the synchronous nature of ISAPI filters), which will
provide significant performance gains. For more information on filters and extensions,
see Chapter7.

Application Isolation Modes

31

Special considerations for ASP.NET
ASP.NET was originally released for use with IIS 5.0 and used its own process model.
When ASP.NET is run in IIS 5 isolation mode, it will use its own process model and
configuration settings as provided in the machine.config file. When ASP.NET runs
on IIS 6.0, however, it uses the worker process isolation mode, disabling its own
process model. This means that if your ASP.NET application has specific configuration
settings in the <processModel> section of its machine.config file, most of those
settings will be ignored in favor of the worker process isolation mode settings. The
exceptions to this rule are the maxIOThreads and maxWorkerThreads entries, which
will be read and used by IIS. The maxIOThreads value will control the number of
threads the worker process will use to receive asynchronous requests from HTTP.sys,
and the maxWorkerThreads value will set the number of application threads used by
the ASP.NET ISAPI.

Application Isolation and Performance
Not to be confused with the concept of application isolation modes, application
isolation is the separation of applications by process boundaries, which prevents them
from interfering with one another. As we have seen, application isolation in worker
process isolation mode is accomplished via application pools. In IIS 5 isolation mode,
you can configure isolation using the AppIsolated property setting for the
application, selecting in-process, pooled, or high isolation. This is very similar to the
options available to you in IIS 5.0. In either pooled or high isolation mode, there is a
performance hit caused by remote procedure calls necessary between inetinfo and
the WAM object (an example of which would be retrieving an ISAPI Server Variable).
This performance hit is not present in worker process isolation mode, as applications
are loaded in-process to w3wp.exe.

Here's a comparison between the two modes with respect to the features provided:

Feature Worker Process
Isolation Mode

IIS 5 Isolation Mode

Basic Request/Response Yes Yes

Runs ISAPI Filters and
ISAPI Extensions

Yes, as Worker Processes Yes, In-process
(inetinfo.exe) as well
as out-of-process
(dllhost.exe)

Worker Process
Management

Yes, in WAS. Processes run
as w3wp.exe

No

Application Pooling Yes (multiple pools) Limited (one pool only)

Application Recycling Yes No

Chapter 2: The New Request Architecture

32

Feature Worker Process
Isolation Mode

IIS 5 Isolation Mode

Web Gardens Yes No

Health Monitoring Yes No

Debugging Yes Limited

Processor Affinity Yes No

Performance Tuning Yes Limited

HTTP.sys Configuration Yes, in WAS Yes, in WAS

Out-of-Process ISAPI w3wp.exe dllhost.exe

ISAPI Filters w3wp.exe inetinfo.exe

FTP, NNTP, and SMTP inetinfo.exe inetinfo.exe

Now that we have taken a comprehensive look at the isolation modes offered by IIS
6.0, we will describe the two components of the request architecture: HTTP.sys and
Web Administration Service.

HTTP.sys
The Hyper Text Transfer Protocol (HTTP) stack (HTTP.sys) is a new kernel mode
driver, listening directly at the TCP/IP level, and is the sole channel for HTTP requests
to IIS. In IIS 5, HTTP requests were served by the Winsock/afd.sys components,
which had difficulty sharing ownership of port 80, the port for HTTP and port 443, the
port for Secure Socket Layers (SSL). Furthermore, since there were several teams at
Microsoft who all implemented their own version of the HTTP server-side stack, there
were a number of places where bugs could be introduced into the HTTP process.

For Windows Server 2003 (which includes the IIS 6.0), the networking team decided to
unify those efforts and develop a server-side HTTP listener that would offer a pure
"request and response" kernel mode API. Kernel mode describes the privileged
processor mode in which the NT-based operating system executive code runs. The
code executing in the kernel mode has access to critical operating system resources,
such as system memory and hardware. The boundary between kernel mode and user
mode (in which applications run) is designed to protect the operating system from
bugs introduced by user code. In other words, a misbehaving application in user mode
will not interfere with the operating system or its ability to support other applications.

HTTP.sys

33

HTTP.sys is a new part of the networking subsystem in Windows Server 2003, and is
available not only to IIS 6.0, but also other components as well. Having a separate
HTTP service allows other applications that utilize HTTP to benefit from a dedicated
high-performance HTTP stack. HTTP.sys is responsible for all TCP connection
management, request routing, text-based logging, caching, and Quality-of-Service
(QoS) functions, including bandwidth management, connection limits and timeouts,
and queue length limits. Since HTTP.sys is not processing requests other than routing
them to the correct consumer, no application-specific code is ever loaded into the
kernel mode. This means that developers don't need to worry about errors being
introduced into the kernel mode that cause an appearance of the dreaded blue screen.

Kernel-level Queuing
HTTP requests come into HTTP.sys (which is responsible for all connection
management) and are routed to the appropriate application pool by way of a
Universal Resource Identifier (URI) namespace. Application pools will be covered in
detail later – for now, consider an application pool as one or more web applications on
your server. Each application pool registers those portions of the URI namespace for
which it services requests, and receives its own request queue within HTTP.sys. An
application pool may be servicing more than just one portion of the URI namespace.

Since HTTP.sys runs completely within kernel mode, any problems in user mode
don't affect it. Even if an application pool has to be restarted (for any reason),
HTTP.sys will continue to queue requests for that application pool, anticipating that
the pool will recycle and begin to accept requests again. When IIS shuts down, it
removes its application pools and their URI namespace registrations from HTTP.sys.
This way, while HTTP.sys continues to operate and serve applications other than IIS,
it will no longer queue requests for the shutdown IIS application pools.

URI Cache
HTTP.sys implements a URI response cache, allowing it to serve cached responses
completely within kernel mode and avoiding a costly transition to user mode. By
avoiding the transition from kernel mode to user mode, literally thousands of CPU cycles
are cut from each request, and the overall code path to serve a response from the cache
is significantly shorter. The mechanism for transitioning to user mode relies on the
Windows IO Manager, which must acquire, process, and complete IO Request Packets
for the transition. This costly procedure is avoided completely when a response is served
from the cache, and a performance gain on the order of 100% can be achieved.
HTTP.sys has an advanced algorithm for determining what is placed in the cache,
basing its decisions on the distribution of requests that a particular application receives.

Chapter 2: The New Request Architecture

34

Quality-of-Service
Quality-of-Service describes the methodology behind managing server resources like
memory or CPU cycles. An administrator may control the resources allocated to sites
and application pools, thereby affecting the quality of service that other sites and
applications receive. Quality-of-Service components include:

❑ Bandwidth Throttling

❑ Connection Limits and Timeouts

❑ Application Pool Queue Length Limits

Bandwidth Throttling
Bandwidth Throttling allows you to limit the amount of bandwidth available to each
individual web site. In the case of a server with multiple sites, it often makes sense to
limit available bandwidth for non-critical sites and to ensure adequate bandwidth for
important sites. As far back as IIS 4, bandwidth throttling could be done on both site
and server levels. IIS 6.0 takes advantage of the bandwidth throttling support provided
by NT QoS services. With the addition of the MaxGlobalBandwidth setting, it is now
possible to throttle all sites (that do not have their own individual settings) collectively
at a given rate. Sites may have more specific settings, as provided by its individual
MaxBandwidth setting, which will exclude the site from the global limit.

The bandwidth settings for the server and each web site can be set using the property
pages. Open the IIS Manager (enter inetmgr in the Run command window) and
right-click the appropriate entry in the left tree structure. That will bring up a menu,
where you can click the Properties option and then the Performance tab. That will bring
up the following property page:

HTTP.sys

35

Using the Performance property page, you can configure the bandwidth settings for both
the server as well as individual sites.

Connection Limits and Timeouts
Connection Limits, as the name implies, limit the number of simultaneous connections
at any one time. If a connection limit is reached, further attempts to connect will receive
an error in response, and will then be disconnected. Limits may be set on a per-site basis
as well as on the server as a whole. When a connection limit is reached, IIS 6.0 returns a
403.9 error code. In IIS 5, this error was customizable to be a file, URL, or the default
text. In IIS 6.0, however, this error is not customizable, and returns the default text only.
Connection limits are detected and acted upon from within HTTP.sys. The settings for
connection limits can be set using the previous screen as shown.

IIS 6.0 supports four types of connection timeouts. The first three were available in IIS
5, and include a timeout where a connection has sent data but is now idle, a timeout
where a connection has been established but no data has been sent, and a timeout on
sending a response, based on a minimum bytes-per-second value. The fourth, new to
IIS 6.0, is a timeout designed to prevent clients from sending data at an unacceptably
slow rate. This ReceiveEntityBody timeout uses the ConnectionTimeout value to
ensure that entity bodies are received in a timely manner. Once IIS knows that a
request has an entity body, it starts a separate timer for receiving the entity body. This
time is reset each time a packet of entity body data is received. If it times out, the
connection is closed. The various timeouts provided by IIS 6.0 are:

❑ ConnectionTimeout
It specifies the amount of time the server will wait before disconnecting an
idle connection. This is similar to the IIS 5 ServerListenTimeout
property. In some instances, applications that use port 80 for other
tunneling protocols may wish to keep the connection open, even though it
is idle. In such cases, this timeout must be increased.

❑ MinFileBytesPerSec
It specifies the minimum net bandwidth to determine how long it should take
to send a response. In cases where your server is on a link that may be slow at
times, increasing this value will ensure that valid connections are not closed.

❑ HeaderWaitTimeout
It specifies the number of seconds the server should wait for all HTTP
headers to be received before disconnecting the client. This aids in
avoiding a common denial-of-service attack that attempts to create the
maximum number of open connections.

Note that increasing any timeout values can be dangerous, as it can open up your
server to denial-of-service attacks by allowing abnormally long requests to sit idle,
thereby consuming resources.

Chapter 2: The New Request Architecture

36

The ConnectionTimeout property can be set for a web site using the property pages.
The following screen can be obtained using the same manner as described previously,
and clicking on the Web Site tab:

Connection timeout may be changed on the Web Site properties panel as seen in the
previous screen.

Application Pool Queue Length Limits
Application pool queue length limits are used to prevent too many requests from being
queued and overwhelming the server. If a new request would exceed the queue length
limit, the request is rejected by sending a 503 error response and closing the connection.
In cases where a single web site becomes so busy with requests that other sites on the
server are suffering, an administrator might consider lowering the queue length limit for
the application that serves the requests for that site. This is to constrain the number of
requests that the server will queue, thereby freeing resources for other sites.

HTTP.sys sets the queue length limit to a default of 3000. IIS 6.0 resets this value to 1000
as the default. In cases where this limit is reached, an administrator might be advised to
first evaluate what applications are running such that they are unable to serve requests
fast enough and therefore the queue grows past 1000 requests. If the machine's CPU is
not at its maximum load, Web Gardens are a possible solution, especially when an
application is causing a queue to back up due to request processing taking an
abnormally long amount of time (perhaps doing a very complex database operation). In
cases where the CPU is at its maximum load, and the application cannot be further
optimized, it might be time to invest in more server hardware.

The Web Administration Service

37

Logging
Text-based logging of HTTP requests is now handled by HTTP.sys, bringing
performance and reliability gains to IIS 6.0. Because this logging is done at the kernel
level, the worker processes need not worry about concurrency issues when writing to
log files. However, the ODBC and custom logging modules are still handled by the
worker processes. These methods often (especially in the case of ODBC) rely upon a
database (such as Microsoft SQL Server) that handles concurrency issues; therefore,
worker processes should not be impacted.

!!!!If custom log modules or ODBC logging is used, kernel mode caching will be
automatically disabled by IIS. This is done specifically to prevent the log from
missing hits that are retrieved from the cache.

Logging Mode (file format) Process

W3C Extended (as defined by the World Wide Web
Consortium's Working Draft WD-logfile-960323, found
at http://www.w3.org/pub/WWW/TR/WD-logfile.html)

HTTP.sys

IIS HTTP.sys

NCSA HTTP.sys

Centralized Binary Logging HTTP.sys

ODBC w3wp.exe

Custom w3wp.exe

For more detailed information about logging, see Chapter 6.

The Web Administration Service
The Web Administration Service (WAS), also known as the process manager, is a
user mode component of W3SVC, responsible for process management and
configuration. WAS works with the metabase to handle the configuration information
passed to HTTP.sys and is used in the management of worker processes. WAS is also
responsible for starting and managing the operation of worker processes, including
monitoring the health of worker processes. We refer to the Web Administration Service
as WAS as well as the process manager.

Chapter 2: The New Request Architecture

38

When IIS is first started, the WAS swings into action. It reads the configuration
information from the metabase file, and initializes the namespace routing tables in
HTTP.sys. Basically, it means that an entry is made for each application. This entry
will help HTTP.sys to decide which application pool to forward the request,
depending on the URLs mapped to the application pool. HTTP.sys uses this
information to set up request queues for the application pools. All these steps are
completed before HTTP.sys starts accepting requests.

When new applications and application pools are added, WAS configures HTTP.sys
accordingly. This involves configuring HTTP.sys to accept requests for new URLs, setting
up new request queues, and indicating which application pool to forward the requests
for new URLs. WAS manages the lifetime of worker processes. That entails starting
worker processes, monitoring their health, and restarting them as and when necessary.

Application Pools
One of the key features of IIS 6.0 is Application Pools. Application pools define a set of
one or more web applications served by one or more worker processes. Application
pools allow different web applications to be separated such that they can be served by
separate worker processes in separate application pools. Web applications can also be
grouped into an application pool in order to share configuration settings. Each
application pool is a separate Windows process (an instance of w3wp.exe), and is
completely independent of other application pools, having no facilities for
communicating between each other. Each application pool represents a request queue
within HTTP.sys. They are considered completely segregated process spaces by
design. Application pools can serve a single web application (such as an ISAPI
application or ASP.NET page) or multiple applications. Multiple web sites may be
placed in a single application pool, and any web directory or virtual directory can be
assigned to an application pool.

The application and application pool for a web site can be configured by using the
property pages for the web site. Clicking the Home Directory tab on the property pages
displays the settings:

Application Pools

39

Application pools allow configuration settings to be specified independently from other
groups of web applications. You can specify the health monitoring aspects of each
application pool, and schedule application pool recycling based on the number of hits,
and the amount of memory used, or uptime. Each application pool can be configured
to conserve resources by stopping its worker process after a configurable amount of
idle time, and limit the size of its request queue.

When IIS 6.0 is installed, one application pool is created as the default application pool
for all sites. In the following screenshot, you will see that all of the web sites are
running under the single default application pool; DefaultAppPool.

If you are hosting a single site, you should consider using this default application pool,
though you may find it useful to rename it to something more meaningful, related to
your application. If, on the other hand, you are hosting multiple web sites on a single
server, you could create separate application pools for each site; thereby isolating them
from interfering with each other, and allowing you to maintain stricter security control
by configuring the worker processes to have different privileges.

Chapter 2: The New Request Architecture

40

In the previous example, if we wanted to isolate our Photography site, perhaps because
we wanted more control over the applications within the site, we could create a new
application pool and place the site within it.

In the previous figure, right-click on the Application Pools, then click New | Application
Pool to bring up the Add New Application Pool panel:

Creating a new application pool is as simple as providing it with a name, and giving it
either default settings (which you can customize later), or copying the settings of an
existing application pool.

Selecting the application pool for your application is as simple as choosing an available
application pool from the drop-down box located in the Home Directory tab of your
application's properties:

In this scenario, the Photography web site was put into its own application pool,
isolating it from other applications. In a real-world scenario, this could be done
because there might be a large number of sizable images being displayed. Hence, finer
control over configuration will be desired, as well as a higher degree of isolation for
image processing applications.

Application Pools

41

Another possible scenario in which application pools are useful is where you have
both a staging and a production version of the same site. You might consider using
different application pools to provide more separation (and possibly different
configurations) between the production and testing versions.

Separating applications into independent processes eases a number of management
tasks, such as bringing a site online or offline, making changes, managing resources, or
debugging. This is definitely an advantage over previous versions. Much like the
architecture of IIS 5 out-of-process applications (like ISAPI applications), separation is
determined by URI namespace. As described before, HTTP.sys routes requests to a
particular application pool based on a combination of either web site name or IP
address, port, and URL prefix.

Application Pool Identity
The identity of an application pool is the user account under which the worker
process runs.

You can assign a pre-defined account or a user-configurable account to an application
pool as its identity. Changing the identity is accomplished from the application pool
properties page; accessible by right-clicking on the application pool you wish to change:

The identity is configurable via an application pool property, represented in the
metabase as /LM/W3SVC/AppPools/<AppPoolID>/AppPoolIdentity, and contains
the following possible values:

Chapter 2: The New Request Architecture

42

Property
Value

Description

0 LocalSystem Account. Member of the IIS_WPG group. The
IIS_WPG group is a user group installed by IIS 6.0 that provides the
minimum set of privileges required by IIS. This group provides a
convenient way to use a specific user for the identity account without
having to manually assign the proper privileges to that account. If the
configured account you create is not in the IIS_WPG group and does
not have the appropriate permissions, the worker process will not
start, and an error will be logged to the system event log.

1 LocalService Account. Member of IIS_WPG group. Unlike
NetworkService (below), the LocalService account has no
network privileges, and should be used if the web application has no
need for access outside the server upon which it is hosted.

2 (default) NetworkService Account. Member of IIS_WPG group. This is the
lowest privileged account of the three pre-defined accounts.

3 Configured Account. Set the property WAMUserName and
WAMUserPass to the name and password of the account to use.

It is always good practice, when choosing an identity, to select
the least possible privileges necessary to accomplish your
goals. An identity with privileges like LocalSystem will give
your application permissions that might constitute security
vulnerability, should your application be compromised.

See also the discussion on impersonation in Chapter 7.

Demand Start of Application Pools
When the first request for a URL arrives, and if it is a part of the namespace for an
application pool, the worker process (or first worker process in the case of a Web
Garden) for that application pool is started. This feature, known as Demand Start,
ensures that processes for little–used applications aren't started, even when there are
no requests, and would consume resources by sitting idle.

Application Health Monitoring

43

The process manager reads the configuration information for application pools at
startup time. The configuration manager initializes the namespace routing table within
HTTP.sys, with one entry for each application pool. These entries comprise the
regions of URI namespace for each application pool and the maximum number of
worker processes for the group (typically only one, but more than one in the case of
Web Gardens). This initialization configures HTTP.sys to recognize that there is an
application pool available to respond to requests in a particular part of the namespace.
When a request comes into HTTP.sys for an application pool and there are no
processes available to handle it, HTTP.sys notifies the process manager, which starts
the worker process. In the interim, HTTP.sys queues the request (and any further
requests) until the process is ready.

Application Health Monitoring
Nobody writes perfect software. Even the best applications have bugs. IIS 6.0 helps
manage this inevitability by constantly monitoring the health of applications and taking
both preventive, as well as corrective, measures. IIS 6.0 can help diagnose problems
such as memory leaks over time and access violations, and help take appropriate
actions to deal with them. WAS will consider an application "unhealthy" if it has
crashed, hung or terminated abnormally. All of the available IIS threads in the worker
process are blocked, or the application notifies IIS directly that a problem exists.

Health Detection
You can configure an application pool to periodically "ping" a worker process, and take
action if a response is not received. Pinging is accomplished via a named pipe between
WAS and the worker process. A message is sent between WAS and the worker process
over the named pipe. If the ping succeeds (the message is received and a response is
sent), WAS will presume that the worker process is in good health. If there is a problem,
like the worker process not responding in time, WAS can either restart the worker
process or execute user-defined actions. Worker processes implement pinging in their
own thread pool, so you need not implement any special code in your applications to
benefit from this feature. The PingingEnabled metabase property controls whether an
application pool will implement pinging, and the PingInterval property configures the
number of seconds between successive checks.

Normal operation of an application
When a worker process is performing normally, it sends ReceiveRequest message to
HTTP.sys. Once HTTP.sys receives a request, it will try to complete a
ReceiveRequest call from the worker process. If there are no such calls pending, the
new request is queued in HTTP.sys, up to the queue limit.

Chapter 2: The New Request Architecture

44

When an application crashes
When a worker process crashes (and exits), any ReceiveRequests which have
completed to the worker process, will have their respective connections reset. The client
will see TCP resets (Winsock 10054 errors). Any requests that are on the HTTP.sys
queue are not negatively affected by a worker process crash, since they aren't associated
with a worker process yet. When the process fails, the process manager will detect the
crash and can restart the process, which will then process the requests on the queue.

This changes if a debugger (such as Visual Studio) is attached to
the worker process. In this case, the debugger catches the
crash. Since the process is still active, the client will see a hung
connection and will eventually timeout. For details on how to
attach a worker process to a debugger, refer to Chapter 7.

Rapid Fail
In the event an application pool experiences a certain number of crashes in a certain
amount of time, the pool may be completely shutdown. The number of crashes and
the amount of time after which the pool is shut down can be configured for each pool.
Additionally, you can manually put an application pool into a Rapid Fail state. When
this state is entered, HTTP.sys will return a 503 Service Unavailable message to any
requests for the shutdown application pool. This state reduces the processing overhead
on the server, as requests for failed applications never make it out of kernel mode.

You can configure the properties related to the health of applications in a pool using
the property pages of the application pool. Right-click on any application pool entry in
the IIS Manager and select the Health tab:

Application Health Monitoring

45

Orphan Worker Processes and Debugging
If a worker process does not respond to a ping, the process still exists even though it is
seen to be in a locked state. You can configure IIS to start an application or a script in
this case. Additionally, if applications have the debugging action enabled, a new
worker process will be started, and the misbehaving worker process will remain
available for debugging. In other words, the worker processes will not be terminated
by WAS, enabling you to attach a debugger for further evaluation.

!!!!Leaving a large number of locked worker processes around without shutting
them down can quickly eat up resources. If you enable debugging, make sure
that you actually debug and then shut down the misbehaving process.

Applications declaring "Unhealthy"
ISAPI applications may directly report themselves as "unhealthy", so that they are
recycled, via the new server support function HSE_REQ_REPORT_UNHEALTHY. To use
this function, the application pool containing your ISAPI application must have pinging
enabled, as it is during the ping that the unhealthy state is checked.

This is how ASP and ASP.NET recycle themselves. If the ASP ISAPI extension detects
that too many of its threads are blocking, it will use this function to signal a recycle.

!!!!Signaling that your ISAPI application is unhealthy and should be recycled will
recycle the worker process for the application pool containing your ISAPI
application. If there are other applications in the application pool served by
that worker process, they will be affected.

Application Recycling
IIS can restart (refresh) worker processes within an application pool on a scheduled
basis. This is especially useful in cases where you're running web applications that are
both poorly behaved and cannot be modified. Recycling can be configured for elapsed
time, number of requests served, specific times, memory usage, or on demand.
Recycling happens in one of two possible ways; either the worker processes can be
stopped and a new one started, or worker processes can be recycled in an
"overlapping" fashion.

Chapter 2: The New Request Architecture

46

The first option is straightforward; worker processes are stopped when a certain
condition that has been configured is satisfied for example, after the process services a
certain number of requests. In an overlapping recycle, the running process is allowed
to complete processing the remaining requests in its queue while a new process is
created. Because HTTP.sys is responsible for queuing requests to application pools, a
recycled worker process will have new requests held by HTTP.sys until it is ready to
accept them, providing uninterrupted service. After the new worker process starts and
is ready to accept traffic, new requests (as well as queued ones from the intervening
time) are routed to the new worker process, while the old process finishes and shuts
down gracefully. This provides uninterrupted service by allowing the old process to
complete (or "drain") existing requests before it shuts down. If the old process takes
too long (in the case where it has crashed and is hanging), IIS will shut it down
forcibly.

!!!!Since the timeout value of an overlapping recycle (and for that matter, any
shutdown condition) is configurable, it is possible to forcefully shut down the
old process before it has finished servicing existing requests.

The following table outlines the different methods of process recycling. Note that these
options are not mutually exclusive and you can use one or more of them at the same
time. Remember, as far as possible, you should attempt to fix the problem at the source
(your application) rather than rely on recycling.

Recycle Mode Description

Elapsed Time Recycles worker processes after an elapsed number of
minutes. Use this mode if you know that your
applications are failing after a certain time period.

Number of Requests Recycles worker processes after a specific number of
HTTP requests. Use this mode if you know that your
applications are failing after a certain number of requests.

Scheduled Time(s) Recycles worker processes at specified times within a
24-hour period.

Memory Usage Recycles worker processes based on the amount of virtual
memory used by the w3wp.exe process. Use this mode if
you know that your application has a memory leak.

On Demand Recycles worker processes when an IIS administrator
instructs IIS to do so. Use this mode to recycle a particular
application rather than restart the entire web service.

!!!!When an application is recycled, you will almost surely lose any session state that
you had stored, unless you have persisted it elsewhere (such as to a database).

Application Health Monitoring

47

You can set an application to be recycled by configuring the settings accessed through
the properties page of an application as described for the previous screen and clicking
on the Recycling tab:

Idle Process Timeout
An application pool can be configured to shut down worker processes that have sat
idle for a configurable amount of time, thereby freeing up resources. New worker
processes will be demand started when new requests are received for their application
pool. The settings for timeouts can be accessed by opening the property pages for an
application pool and clicking the Performance tab:

Chapter 2: The New Request Architecture

48

Web Gardens
An application pool may configure the amount of worker processes assigned to the
pool. A Web Garden is created when multiple worker processes exist within a single
application pool. Do not confuse Web Garden with Web Farm, which is a term used to
describe multiple physical servers, all hosting the same web application (usually for
load-balancing purposes). Web gardens improve both the performance and reliability
of a web application. Web gardens can provide additional available worker processes,
when one or more are heavily loaded or locked in the process of servicing a request.

Using Web Gardens
To make the best use of Web Gardens for process balancing, multiple application
request queues are created and HTTP.sys is responsible for distributing the load
across the processes in a Web Garden. HTTP.sys will route requests from different
connections to the processes in a round-robin fashion. For example, if a Web Garden
has three processes, the first three requests from different connections will go to the
first, second, and third process in order. The fourth request will then go to the first
process, and the cycle will continue. Considering the overhead involved in operations
that are serialized for locking, this method provides performance advantages.

Session State in Web Gardens
Remember that HTTP is a stateless protocol. What that means is that if a connection is
closed after processing a request, there is no guarantee that the same worker process
will service future requests, even from the same client. In cases where session state
must be maintained across different connections, the session state could be lost if a
subsequent request were sent to a different worker process. While keeping the
connection open is one possible solution, it is recommended that state be persisted to
ensure that it is available. What this means is storing the state in an external location
such as a database – for example, ASP.NET provides the ability to store session state in
a SQL Server database.

Application Pool Parameters in Web Gardens
While most settings for application pools remain unchanged when operating a Web
Garden, there are a few settings which have modified meanings. They are:

❑ MaxProcesses
This is the property to change to create a Web Garden. By default, all
application pools have one process and MaxProcesses is set to "1".
Increasing the value of MaxProcesses to the number of worker process
instances, you will create a Web Garden for your application pool.

Web Gardens

49

❑ IdleTimeout
It is individually calculated on a per-process basis, allowing processes to
timeout individually.

❑ PeriodicRestartTime
It states that all of the processes in a Web Garden will recycle within the
time specified. For example, if a Web Garden consists of four processes
and PeriodicRestartTime is set to 16 hours, each process will be
recycled every four hours. It should be apparent that this distribution of
restart times maintains that each process is recycled every
PeriodicRestartTime hours. In the event of a restart due to a crash or
other problem, that time period is reset to when the process is restarted.

❑ PeriodicRestartRequests
It operates in a similar fashion to PeriodicRestartTime. For example, in a
Web Garden with four processes and a PeriodicRestartRequests value
of 80,000 requests, the first process will recycle after 20,000, the second after
40,000, the third after 60,000, and the fourth after 80,000 requests. Each
worker process will then recycle every 80,000 requests in this manner.

❑ RapidFailProtection
It calculates the total number of failures across all processes in the Web
Garden when comparing them to the time interval
(RapidFailProtectionMaxCrashes over
RapidFailProtectionInterval).

Processor Affinity
Processor affinity is an application pool property that forces worker processes to run
on specific processors on a multi-processor machine. A Web Garden provides its best
performance gains on a multi-processor server, where each worker process in a Web
Garden may be assigned to run on a separate processor. For example, on a server that
has eight processors, an application pool might be configured to run on four of
those processors.

SMPProcessorAffinityMask is the mask for all processes running in a Web Garden.
To set processor affinity, you must set the SMPAffinitized property to true, and then
set the SMPProcessorAffinityMask to the range of CPUs you wish your worker
processes to be bound. In the previous example, the affinity mask would be set for the
processors numbered zero through three, and all worker processes in the application
pool would run on the first four processors.

Chapter 2: The New Request Architecture

50

Summary
With the new kernel mode driver, HTTP.sys, and the new worker process isolation
mode, IIS 6.0 is a platform that extends the capabilities as well as the performance and
reliability of the web application platform. The new capabilities of IIS 6.0 allow for the
offering of new services based on the web server, and the performance enhancements
allow for more services to be offered on existing hardware, while simultaneously
improving the reliability of those new as well as existing services. Coupled with an
enhanced ability to maintain and configure these new features, the new request
architecture of IIS 6.0 is clearly a step forward.

In this chapter, we looked at the new request architecture of IIS 6.0, which provides
many improvements over the previous versions. IIS 6.0 separates the request
processing code and the application handling code into HTTP.sys and Web
Administration Service respectively. HTTP.sys is a kernel mode driver and provides
facilities of kernel level request queues, response caching, logging, and configuring the
quality of service provided to the clients. WAS uses the metabase settings to configure
the request queues for HTTP.sys. It also provides the facility of creating and
monitoring worker processes for applications to run.

IIS 6.0 provides a new Worker Process Isolation Mode, in addition to the IIS 5 Isolation
Mode. The new mode entails more features, such as application isolation, multiple
application pools, application health monitoring, rapid fail protection, and application
recycling. Configuring an application pool as a Web Garden and using the processor
affinity feature can improve the performance of the applications. IIS also provides the
option of running applications in the IIS 5 isolation mode for backward compatibility in
situations that require it. We saw how to choose between these two options and to
switch between them.

To summarize, here are some of the features and components of the new request
architecture:

❑ Kernel-mode HTTP listener (HTTP.sys)

❑ Web Administration Service (WAS)

❑ Application Pools

❑ Worker Process Isolation Mode

❑ Web Gardens

❑ Health Monitoring and Rapid Fail Detection

❑ Recycling

❑ Idle Timeout

In the next chapter, we will take a comprehensive look at the security aspects of IIS 6.0.

Summary

51

Chapter 2: The New Request Architecture

52

